
NI
CV)
Lfl

ELCTE &A
DEG 19?3AI

IZ

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force dase, Ohio

AFIT/GCA/LSQ/90S-1

S E L!%i
DEC 19 1990 '

_D

A COMPARISON OF

SOFTWARE SCHEDULE ESTIMATORS

THESIS

Bryan A. Daly, B. S.
Captain, USAF

AFIT/GCA/LSQ/90S-1

Approved for public release; distribution unlimited

The opinions and conclusions in this paper are those of the
author and are not intended to represent the official
position of the DOD, USAF, or any other government agency.

Ac(;escan For
NT;S C .. &I-

b 3,:.: "'d __

j . ,c ,:,

B y ..-...

D , t ib ! rio I

Avi:st S y Cc.e

Dist ASzic ~ao

AFIT/GCA/LSQ/90S-1

A COMPARISON OF SOFTWARE SCHEDULE ESTIMATORS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Degree of

Master of Science in Cost Analysis

Bryan A. Daly, B. S.

Captain, USAF

September 1990

Approved foi public release, distribuion unlimited

Acknowledgements

This research effort has been a very rigorous endeavor which would

not have been completed without the aid of key individuals. I would like

to acknowledge those people now.

I would like to thank Ms. Peggy Wells at the Electronic Systems

Division for assisting me in finding a good data base with which to work. I

would also like to thank Mr. Paul Funch for supplying me with that data

base and indicating certain problems in analysis of this type of data.

I am thankful to Professor Daniel Ferens in supplying the models

used and in contributing his valuable experience to the project. I would

also like to thank Dr. Roland Kankey for being my thesis reader, giving me

much needed feedback and guidance.

I would be remiss in not thanking my classmates for their support

and aid in completing this enterprise. I would particularly like to thank De

Weelborg McMurry and Dimitri Yallourakis for helping me to maintain my

perspective and drive.

I would most like to thank my wife Susan for putting up with me

over the last 15 months. There have been many joys and sorrows inciden-

tal to this venture through which she has greatly assisted me. Only through

such warmth, love, and support have I accomplished what I have.

ii

Table of Contents

Page

Acknowledgements ii

Table of Contents iii

List of Figures .. vi

List of Tables .. vii

List of Equations viii

A bstract ... ix

I. Introduction .. 1
General Issue 1
Specific Problem 1
Assumptions 2
Research Objectives 2
Investigative Questions 3
Scope and Limitations 3

II. Literature Review 5
Software Development Life Cycle 5
DoD Standard 2167A 7
Software Development Environment 10

Technical Feasibility 10
Personnel Issues 11

Recruitment 12
Top Talent 13
Job Matching 13
Career Progression 13
Team Balance 14
Phaseout 14

Goal Setting and Organizing 15
Doing the W ork 15

Meet the Real Customer 15
Pick the Customer's Brains 16
W rite It Down 16
Get It Approved - Gradually 16

Dissolution or Acceptance of New Goals 16
Time Constraints 17

iii

Page

Quality Tradeoffs 17
Other Goal Tradeoffs 18

Cost Estimating Methodologies 20
Regression 20
H euristic 21
Phenomenological 21

Sizing ... 22
Software Development Models 23

PRICE-S 23
Ray's Enhanced Version of Intermediate COCOMO
(REVIC) 25
SASET 30
SEER 31
SLIM 33
SPQR/20 35
System -4 37

Previous Efforts 39
UT Research Institute 39
MacDonald Dettwiler and Associates 40
Capt. Blalock 41
US Army Aviaticn Systems Command 41

Ill. M ethodology .. 43
Tests .. 45

Linear Least Squares Best Fit 45
Log-Log Least Squares Best Fit 47
W ilcoxon Sign Test 47
Friedman Rank Sum Test 48
Percentage Method 50

IV . Findings ... 51
M odel Selection 51
Data Base Selection 51
D ata Base .. 52
Linear Least Squares Best Fit 52
Log-Log Least Squares Best Fit 53
W ilcoxon Test 53
Friedman Rank Sum Test 53
Percentage Method 54

iv

Page

V. Conclusions and Recommendations........................ 59
Conclusions 59
Recommendations 60

Appendix A. LSBF Analysis 61

Appendix B: Log-Log Analysis.............................63

Appendix C: Wilcoxon Test 65

Appendix D: Friedman Rank Sum 70

Appendix E: Percentage Method 72

Appendix F: Adjusted Data 75

Bibliography ... 90

VITA .. 94

V

List of ieu

Figure Page

1. An Example Of System Development Reviews And Audits 8

2. Life Cycle Estimate Comparison 57

vi

Table Page

1. DoD-STD 2167A Life Cycle Activities 7

2. Primary PRICE-S Inputs 24

3. PRICE-S Outputs 26

4. COCOMO Factors by Category 28

5. SPQR/20 Activities 36

6. Least Squares Assumptions 46

vii

Equation Page

1. COCOMO Manpower Estimate 29

2. COCOMO Schedule Estimate 29

3. Friedman S Statistic................................... 48

4. Friedman m* Statistic 49

viii

AFIT/GC ./LSQ/90S-1

Abstract

Accurate schedule estimation in software development programs is

important because schedule is a major determinant of cost. Further, as a

greater percentage of weapon system cost is taken by software, there is a

greater need for knowledge in this area.

in order to verify the accuracy of schedule prediction for software

development obtainable today, this effort examined five commercially

available software cost/schedule estimators. The estimated results were

analyzed for their accuracy in predicting the actual schedules experienced

on the projects. The models analyzed were REVIC, PRICE-S, System-4,

SPQR/20, and SEER.

ix

A COMPARISON OF SOFTWARE

SCHEDULE ESTIMtATORS

I. Introduction

Development of quality software has become increasingly more

important to the Department of Defense. Software costs in the DoD

totaled $ 3.3 billion in 1974 and rose to $10 billion in 1984, a 12% average

annual increase in cost (6:1462).

Speific Problem

The dilemma of developing quality software for the Air Force is

often specifically related to the funds available. Air Force managers are

continually required to execute programs within a specified budget. This

means that we are constantly attempting to generate highly accurate cost

estimates for a project so that adequate funds can be programmed and

budgeted to develop the required software.

A major cost driver for software development is the development

schedule (4:466-467). One author "was struck by the fact that estimates of

developing software program costs (effort) were relatively better than those

of the development calendar times" (40:51). One expert feels that software

1

schedule estimation is the "third wave; the next major area of emphasis in

software estimation", the first two being software cost and size estimation

(14:41). If the schedule for the development of the software can be ac-

curately forecasted, the Systems Program Office will have a greater proba-

bility of an accurate estimate of the funds required to develop reliable soft-

ware that is adequate for the intended task. Given the difficulties of

estimating software schedule, what computer programs give the best

estimates?

Assumptions

The following assumptions have been made for this research effort:

1) Historical data including estimated versus actual schedule of

software development programs is available from some organization within

the Air Force.

2) The literature available regarding software development cost

models is sufficiently detailed to allow comparisons among the model

results.

Research Objectives

In order to fully investigate and secure a significant conclusion to

the research problem, the following research objectives were achieved:

1) Gain sufficient knowledge on the subject of software develop-

ment to understand the estimating process. Particularly, gain knowledge in

2

the area of software schedule estimation to be qualified to assess the

accuracy the different models exhibit;

2) Develop adequate expertise in th- models used so that estimates

may contain minimal error and be analyzable.

Investigative Ouestions

The following investigative questions are raised to support the

research objectives:

1) What are the factors that affect a software development program
schedule?

2) What general methods are available to generate a software
schedule?

3) What computer based programs are available to project the
schedule required for a software development program?

4) What methods are available to measure the accuracy of the
program's estimates, statistical or non-statistical?

5) Using the selected programs and accuracy measures, which
techniques rate the best?

Scope and Limitations

The following limitations will define the scope of this research

effort:

1) Only five current software development cost models were chosen

for analysis.

3

2) The selection of the models depended on the availability of

thorough documentation for each model, the availability of the model itself

and the ability to access the model to run the data.

3) The data base employed contains data of limited breadth. In

some cases a project (observation) will be missing a measurement that is

required to run the model.

4

II. Literature Review

The field of software development is of interest to a wide variety of

people from the programmers themselves to the managers of the largest

corporations, including the Air Force and DoD. An Air Force Studies

Board stated that:

Developing reliable software that is able to perform its intended
function has been a problem since the advent of the digital comput-
er. The Commander of the Air Force Systems Command states that
it is now the most serious obstacle to systems development. (1:5)

From this great interest it is easy to assume that there is a great deal of

information available in the general domain of software development cost

estimation. While this is generally true, there is relatively little information

that specifically addresses the issue of software schedule estimation.

The purpose of this chapter will be to address current views on

software development cost estimating and examine the state of software

schedule estimation today. A review of the Department of Defense

Standard directing the development of software (DoD-STD-2167A) will be

presented, and cost models that will be used in this research effort will be

discussed.

Software Development Life Cycle

Authors have broken the software development life cycle into its

major stages, each author seeing the life cycle somewhat differently. Most

5

of the authors reviewed had included at least four main steps in the life

cycle: 1) Definition, consisting of feasibility studies and requirements

definition; 2) General Design; 3) Implementation, entailing actual program

coding, module level testing, system level testing, and system installation;

and 4) Maintenance (22:25; 41:14-16; 8:4-6; 4:36-37). This general model

may be said to follow the traditional Waterfall model of software develop-

ment first promoted by Winston W. Royce.

The basic Waterfall model as advocated by Royce uses built in

feedback. He states that as each step progresses and the design is further

detailed, there is an iteration with the preceding and succeeding steps

(39:1). The change process is limited by not looking any further than the

surrounding steps (or rarely doing so).

Examples of other software development models include Rapid

Prototyping, Incremental Development, Boehm's Spiral Model, Reusable

Software and the Transform Model (3:41; 10:1453-1454).

The early stages of the software life cycle are very important to the

cost and quality of the end product. Studies have shown that most errors

occur in the Definition and Design stages of the life cycle but the errors

are not discovered until the Maintenance stage (8:6). Based on a study of

major firms' large projects, Boehm estimates that it is up to 100 times

more costly to correct an error during the Maintenance stage than it is

during "he Definition or Design stages (4:39-40).

6

DoD Standard 2167A

DoD Standard (DoD-STD) 2167A, "Defense System Software

Development," "establishes uniform requirements for software development

that are applicable throughout the system life cycle. The requirements of

this standard provide the basis for Government insight into a contractor's

software development, testing, and evaluation effort" (11:iii-iv).

The standard does not specify or discourage any particular method

of software development, but does require that the major software develop-

ment life cycle activities listed in Table 1 be included (11:iv,9).

Table 1
DoD-STD 2167A Life Cycle Activities

1) System Requirements Analysis/Design

2) Software Requirements Analysis

3) Preliminary Design

4) Detailed Design

5) Coding and CSU Testing

6) CSC Integration and Testing

7) CSCI Testing

8) System Integration and Testing

The standard further states that the activities listed above may overlap, be

accomplished iteratively, or may be accomplished recursively (11:9).

7

Ha0ilveremIte Peq Developmen

AcO~yie/OOigcDesigni

otem Ayte

Developmentnt Reiw Anoudt

------ p-o mesgnl

Cooiyng DsgnCo o

soft~sOP -C01 DO440ein miestinge C de

COP- C~i Ince, Oe i oPnis

Functional ~~ ~ ~ PC -10 as ------- Pvlo oni s Confuration

Beein gasolineoi ielin ~oe

HINC- Fiayr be Anli Ex mpeofiys emm o
Testimnge nlgard ml1

DevlopentRevewsAnd Aeita

Sage n

A8

DoD-STD-2167A also lists the required software development

reviews and audits (see Figure 1). As can be seen from this figure and the

required software life cycle activities listed above, the standard uses the

software development life cycle traditionally known as the waterfall model.

While the standard may state that no particular development

method is supported or discouraged, at least one expert disagrees. Fire-

smith, in examining the use of DoD-STD-2167 (the precursor to DoD-

STD-2167A), looked at the applicability of the Waterfall Method to Ada

programming and modem design practices, and did not like what he found.

Among the problems are:

1) Artificial Intelligence and Object Oriented Programming can not

be mapped onto a waterfall structure (15:56).

2) The compilation order restrictions of Ada encourage a bottom-

up approach to software design, while the waterfall method promotes a

top-down approach (15:56).

3) The linear nature of the classical life cycle, with formal review

bottlenecks between phases prohibits the use of recursive methods (such as

Object Oriented Design) (15:57).

4) The lack of useful software to test until the end of the life cycle

may cause some managers to rush into coding too early in order to satisfy

the users (15:58).

9

5) The model does not adequately address the reuse of software (a

major goal of Ada), or the methods for automatically developing software

documentation (15:58).

6) With Ada, coding the specification is frequently a design activity,

blurring the distinction of the different phases (15:58).

7) On large projects, the long delay between requirements defini-

tion and implementation may combine with personnel turnover to cause

changes in the project (15:58).

Software Development Environment

Another area of concern is that of the software development envi-

ronment. Uncertainties in the software development environment affect

the cost of that software. These uncertainties include technical feasibility,

experience of the personnel, time constraints, quality tradeoffs, and other

goal tradeoffs (18:76).

Technical Feasibility. Software programs are being required to do

more than they had to in the past. System architects are forcing software

developers to compensate for inadequacies in the hardware by adding more

functions to the software. At the same time hardware manufacturers are

trying to reduce the size and energy requirements of the hardware, further

confining software coders (21:40-41). The extra requirements placed on

the software are driving up the costs of software development because of

increased technical risk.

10

Parikh agrees that there are technical feasibility problems with

software development. He, however, believes that the technical problems

are due to software productivity gains not keeping up with changes in the

hardware (35:143). Hardware productivity gains are occurring often

enough that software is having a hard time keeping pace. This is illustrat-

ed by the release of the 80386 micro-processor by Intel Corporation before

the development of an operating system for the 80286 micro-processor.

Being constrained by the hardware of a system is the most difficult

problem to overcome because it is the least controllable by the software

manager. Using software tools to help in the programming could be a

great productivity booster (4:678). Parikh supports this view stating "...

software tools, provide a means of automating many processes.., thereby

improving human productivity (35:143)." Tools available include integrated

debugging environments, compilers, pre-compilers, and Computer Aided

Software Engineering (CASE) tools. All can aid in software development.

Personnel Issues, As long ago as 1968, researchers found individual

differences in programmer efficiencies of up to 28-1 in debugging, 25-1 in

capability to code, 11-1 in programming timing efficiency, and 6-1 in sizing

efficiency (21:11). While it is clear that there is a significant difference in

programmers' abilities, companies will generally emphasize the bottom line

in their cost control efforts, hiring less skilled programmers to save money

11

(4:669). By doing so, they may actually be harming their ability to finish a

quality program on time and at cost.

The difference in productivity between a poorly trained programmer

and a well trained programmer is so marked it would do the software

manager well to emphasize this area. Studies show the productivity gains

achieved by hiring a higher level, better trained programmer are usually

well worth the extra pay it costs (6:1465). It is unlikely that there will be a

factor of six difference in pay between a top level programmer and one

who is below average, offsetting the minimum 6-1 efficiency increase

expected from hiring the more expensive programmer (21:11).

Another factor affecting Personnel Experience is the life cycle of a

programming team. By looking at this life cycle a software manager can

gain insight into possible areas on which to concentrate attention. The

cycle is composed of recruitment, goal setting and organizing, doing the

work, and dissolution or acceptance of new goals (43:85).

Recruitment. Recruitment is the formation of the software

programming team. In this area concentrate on finding the right people

for the team. This may be done by using the staffing principles outlined by

Boehm. They consist of 1) The Principle of Top Talent, 2) The Principle

of Job Matching, 3) The Principle of Career Progression, 4) The Principle

of Team Balance, and 5) The Principle of Phaseout (4:667).

12

Top Talent, This principle states that it is to the

advantage of the software manager to hire the best programmers for the

job, regardless of the cost. A study by Augustine in 1979, cited by Boehm,

showed that the top 20% of performers in a given field produce 50% of the

output, and the bottom 50% of the people produce 20% of the output

(4:668). By paying for the top talent the software manager will get that top

50% of output, therefore needing fewer programmers on the team. This

will save money for the developer. This further supports the point made

by Glass regarding Personnel Experience enumerated above.

Job Malcb Job matching requires fitting the tasks

to the skills and motivation of the people available. One technique to be

used is realistic job preview, in which the software manager realistically

states the duties and behaviors expected of the programmer (27). Realistic

job preview allows the programmer to self select or self eliminate for a job

opening.

Career Progession. Boehm believes that career

progression is the way programmers self-actualize (4:670). An example of

a situation in which this principle is not followed is software maintenance.

A programmer in this area of expertise frequently remains on a project for

a long period of time. Remaining on the project provides continuity for

the project but forces the individual to program in only the language in

which the original project was coded. Further, a software manager will

13

usually not send this person to symposiums or conferences because the

need is not "job related". The programmer finds this situation intolerable

and quits, making the situation on the project worse than what the manag-

er was trying to prevent. Filling the need for career progression supplies

one of the growth needs cited by Alderfer (9:97). The importance of

maintaining career progression is further supported by Metzger, an authori-

ty on software project management (33:130).

Team Balance, The team balance principle requires

that you "select people who will complement and harmonize with each

other (4:671)." This principle not only applies to balancing technical skills

on the team but also applies to balancing the psychological components of

the team.

Phaseout, This principle states that no matter how

careful a software manager is in the selection process, some programmers

will not really fit in the team. If this is the case, the programmers must be

removed from the team. It is not to anyone's advantage to allow the

programmer to remain with the team if other members must do the in-

dividual's work. The software manager, however, must remember not to

solely base the evaluation on code output. Other contributions to the

team, for instance a person who can evaluate the needs of the user well or

who is a major contributor to morale, can be just as important as the more

traditional measures of output (4:671-672).

14

Goal Setting and Organizing. Weinberg states 'o achieve

true consensus on group goals, there is no better method than having the

group set the goal itself (33:76)." This is a restatement of the belief that

participative management is a superior method of managing a new project

with no set objectives (9:416-418). By allowing the programming team to

set its own goals, the objectives become more important to the individuals

because they are a reflection of their own feelings.

Doing the Work. This would seem to be the easiest area for

the software manager to control, but the manager must not allow com-

placency to set in. The manager must use proper software management

techniques to make certain that the product composed by the programming

team fills the need of the user. Metzger frames a four step process to

manage the software project: 1) meet the real customer, 2) pick the

customer's brains, 3) write it down, and 4) get it approved - gradually.

Meet the Real Customer. A software developer will

usually meet with a representative of the user, who will lay out the require-

ments to be met iL the program. The possible problem here is that the

developer will be coordinating with a marketing representative or with a

contracting person. This in no way indicates what the true operator of the

system wants. The software manager must meet the real user and be

positive that the needs of the user are understood and met.

15

Pick the Customer's Brains. Invariably the user will

have some idea of how he wants the program done, whether it is in the

layout of the data input screens or the general flow of the program for ease

of use. The manager must try to incorporate as many of these desires in

the finished product as is possible. This is the way to satisfy the user.

Write It Down, Many problems can be circumvented

by writing down the needs of the user as understood by the manager.

Writing down the needs makes them more concrete, and by writing them

down, the manager must think the ideas and needs of the user through.

This starts the development process off well.

Get It Approved - Gradually. The software manager

must not allow the team to charge off into the programming without

getting approval from the user at various steps that what is being coded is

what is needed. If the manager waits until the end of the project to verify

the product is correct, he could have wasted the entire time on a non-

responsive program.

Dissolution or Acceptance of New Goals. This part of the

life cycle of a programming team may be looked on as the step of transfor-

mational leadership. The project is complete and the programming team

must now find new goals (a new project) or dissolve. A good transfor-

mational leader will see a vision of where he wants to go (what project to

16

work on next) and promote that vision to the team (27). The process then

starts again.

Time Constraints. Software behaves like any other product with

regard to time constraints. If the schedule is too ambitious, the product

will cost more. Boehm states that a 25% decrease in nominal schedule

time will cost an additional 23% in cost (4:679). Software managers must

emphasize realistic schedules for the software development life cycle if they

are to complete the project within cost. This is particularly important in

government acquisition.

To prevent an unnecessary increase in the cost of software develop-

ment the software manager must maintain a reasonable schedule. By

postponing any additions to the software until they can be added during the

regularly scheduled updates, the software manager prevents ripple effects

from software development problems from flowing through the initial

program development (6:1465). This ripple effect also influences the

programming team. For example, adding a task may require reassigning a

team member which then requires a change in priorities and manpower,

affecting the schedule (12:72).

Qualit Tradeoffs. Interactions between reliability and costs force

the software manager to make decisions. Reducing software cost at the

expense of quality during the development phase of the software life cycle

could increase the cost of the operations cycle (5:34). Also, any change in

17

quality requirements may increase the time spent fixing problems in the

code. As Gilb relates, "A little change in quality, might well provoke a

calamity (20:81)."

Quality tradeoffs can be minimized by using quality assurance

throughout the development life of the software, rather than leaving the

quality check to the end of the development. Reworking code early in the

life cycle of program development costs less than rework later in the life

cycle (6:1466). This is traceabie to the cost of formal changes to approved

systems and revalidation of the changed code (4:40). If a change results

from an error early in the development cycle, no special approval mile-

stones must take place. If, however, the error is discovered during the

Maintenance phase of the development process, a full approval must occur

with possible changes in the user manuals, and full retest and validation of

the repair.

Other Goal Tradeoffs. Any particular programming goal can be

traded off against any other. Boehm sites an experiment done by Wein-

berg in 1974 in which five programming teams were given the same pro-

gramming assignments but each was told a different attribute to optimize.

One team was asked to complete the program with the least effort (empha-

sis on schedule), another was asked to minimize memory required, another

to minimize the number of statements, another was to produce the most

understandable program, and the last was to produce the clearest output.

18

Each team finished first (or, in one case, second) in its area of emphasis

but no team was able to do well on all objectives (4:20-21). This illustrates

that different software goals conflict with each other and decisions should

be made as to which to emphasize. By trying to emphasize an excessive

number of attributes, a software developer will force the schedule and cost

to increase.

Other goals may be traded off with cost if they are a higher priority,

but modem software programming techniques may make that unnecessary.

Using top down requirements analysis and code walkthroughs emphasizes

the areas of the program which the programmers need to work on and

allows a better check of the code correctness (4:676).

In top down requirements analysis a programmer progresses hierar-

chically from the top, most abstract level of the project to the more de-

tailed levels. This prevents the designer from being bogged down in too

much detail, allowing the designer to concentrate on one level at a time.

The design is done iteratively; it is reviewed after each version and changes

are made as needed (35:93). This process produces a more correct product

from the start, minimizing later changes. Simpson further states that top

down requirements analysis has been declared the best programming

methodology for most programs (41:183).

A code walkthrough consists of a programmer guiding his supervisor

or another programmer through the code produced to date. The combined

19

knowledge of the participants can find problems with the coding and the

logic more easily than the programmer can alone. The walkthrough can

also suggest alternate coding methods that are more efficient than that

produced to date (35:15; 41:24-25).

Cost Estimating Methodologies

Software cost and schedule estimating techniques can generally be

broken down into two broad categories: personal experience models and

parametric models (32:5). A personal experience model relies on analogi-

zing a proposed software project to a historic project of the same function

and size. There are two main problems with this method. Many people

must be queried, which is time consuming; and the project similarity, which

is the basis for the estimate, is subjective (32:5). The second category,

parametric models, is composed of regression, heuristic, and phenomenol-

ogical models.

Regesion In a regression model a set of historic project costs is

gathered, along with various parameters such as software size, number of

input screens, etc., and a relationship is determined statistically (32:6; 38:4-

2). This relationship is then used to estimate the cost of the proposed

software project. This model enables the analyst to use confidence inter-

vals, allowing the statistical risk to be quantified for the project. This

method of cost estimation has the advantage of allowing size and cost

estimation for projects which have no direct analogy (13:10-8). The regres-

20

sion, however, may not actually be a good predictor of software cost,

especially if the data used in the regression is not indicative of the project

the analyst is trying to estimate (24:62).

Heuristic, A heuristic model combines historic data with experience

(32:6). Subclasses of this technique would be the data base analogy and

Program Evaluation Review Technique (PERT) sizing (38:40-41).

The data base analogy is similar to the personal experience model

except that a history of projects with their accompanying characteristics has

been formally documented. The project to be estimated is broken down

into its functional components and compared to similar projects from the

data base. This method of estimating can be very accurate if the data base

is current (38:40-41). Unfortunately, it is also possible to select a project

which is not very similar, which will give erroneous results.

PERT sizing requires that experts in the software development field

be consulted for cost estimates of any modules within the project. These

estimates include the lowest, highest, and most likely costs. The three costs

for each module are then weighted and averaged, producing an estimated

module cost. This technique does not take into account unforeseen

problems so it tends to be biased on the low side of the actual size experi-

enced (38:38-39).

Phenomenological. Phenomenological models base software costs

on a more general process. An example of this is estimating manpower

21

requirements using a Rayleigh Curve (32:6; 37:151-53). The Rayleigh

Curve is a technique developed from diffusion theory (the theory studying

the motion of molecules in a liquid environment). This process is used less

often than others on an exclusive basis because the relationship between

the model and the process is at times tenuous and the technique is difficult

to understand. The Rayleigh curve in particular has been incorporated in

many models that are mainly based on regression.

The measurement used as the basis for many models' cost and

schedule estimates is the size of the project (8:32). There are many

measures available to estimate the size of a new project. One of these is

to use a heuristic based on an expert's best guess of the lines of code

needed for the project. A problem with this method is that not everyone

can agree on what constitutes a line of code. The program may contain

comment lines, blank lines, or non-executable lines, and a strict lines of

code metric would count these. Most experts agree that a lines of code

count should not include comments or blank lines but should include all

the other types (8:34).

Another measure used to estimate program size avoids the problems

of lines of code definition by estimating token count. Tokens are "basic

syntactic units distinguishable by a compiler" (8:37). According to Conte,

Halstead's "Software Science" states a token can generally be considered

22

either an operator or an operand (8:37). An operator would be a keyword

or symbol that specifies an action, such as + or Add. An operand would

be used to represent data within the action. This technique allows greater

weighting of statements which have more executable parameters per line,

as are allowed in some languages.

Yet another measure of size is the function count first proposed by

A J. Albrecht of the IBM Corporation in 1979 (42:68). The function point

technique compensates for differences in lines of code sizing among

languages by lising parameters supplied by the estimator (number of inputs,

number of outputs, number of inquiries, number of data files, and number

of interfaces), weighting them by a formula developed by Albrecht, and

adjusting the final functional estimate by a complexity factor for the project

(42:70-72).

Software Development Models

This research was conducted with the aid of software development

cost models that are commercially available or developed by the DoD.

The cost models used in this analysis were determined by the availability of

thorough documentation for the model. The following paragraphs describe

the models considered for this research effort, with emphasis on the

approach to schedule estimation.

PRICES. The PRICE-S model was originally developed by the

RCA Corporation and is now owned and managed by the General Electric

23

Company. The principal inputs used by PRICE-S may be grouped into the

seven categories shown in Table 2 (19:1-8).

Table 2
Primary PRICE-S Inputs

1) Project magnitude in SLOC

2) Program application (ie type of project)

3) Level of new design and code in SLOC

4) Productivity including experience and skill of program-

ming team

5) Utilization of hardware (constraints)

6) Customer specifications and reliability requirements

7) Development environment

The basis for PRICE-S modeling is a "comparative evaluation of

new requirements in light of analogous histories" (19:1-2). The PRICE-S

model does not use the typical approach used by other models of applying

a previously developed cost estimating relationship (CER). Instead the

PRICE approach is more process oriented, utilizing the experience of the

estimator to tune the results (19:1-13-1-14). By calibrating the data base for

each user, PRICE-S, in effect, generates a new CER for each user.

PRICE-S examines any schedule restraints which are imposed and

costs are adjusted for apparent stretch-out, acceleration, and phase transi-

24

don efficiencies (19:1-2). As explained above, the schedule is "tuned" using

the user's experience. This of course is a subjective assessment but the

manual states that as much as possible "actual recorded data is used to

formulate, test, and verify those assessment processes" (19:1-13). PRICE

acknowledges that data is not always available. In this case the "impact of

schedule variations on cost cannot be statistically processed" (19:1-13).

However, the manual maintains that by knowing actual schedules differ

from original planned schedules, cost impacts can be modeled by using the

processes employed by the programming organization to manage the

schedule (19:1-13-1-14).

Schedule outputs, as well as cost outputs, are made in matrix form,

breaking out results by cost element and development phase (19:1-2). The

classifications used are shown in Table 3 (19:1-1).

PRICE-S also examines Software Operations and Support. Outputs

for this area include maintenance, enhancement, and growth (19:1-14).

Once again, the output is generated by Cost Element.

Ray's Enhanced Version of Intermediate COCOMO (REVIC).

REVIC is a model developed by Raymond L Kile of the Air Force

Contract Management Division, based on the intermediate COnstructive

COst MOdel (COCOMO) described by Dr. Barry Boehm in his book

Software Engineering Economics (4). COCOMO itself is one of the more

popular models used because Boehm published all the equations for his

25

Table 3
PRICE-S Outputs

C Elmnts Development Phases

Design System Concept

Programming System/Software Requirements

Data Software Requirements

System Engineering/ Preliminary Design
Program Management

Detail Design

Quality Assurance CSC Code/Unit Test

Configuration Management System Test and Evaluation

Operational Test and Evaluation

model and there is no fee for usage.

The differences between REVIC and the intermediate COCOMO

defined by Boehm are that REVIC adds some parameters not used by

Boehm (security-SECU, management reserve-MRES, and required reus-

ability-RUSE), and that the coefficients used by REVIC are somewhat

different than those used by Boehm because the model was calibrated

using a DoD data base (29:4). REVIC also includes an additional develop-

ment period called system engineering which takes place before prelimi-

nary design, and a period called development test and evaluation which

takes place after integration and test (29:2). These two additional periods

will be considered during normalization.

26

The COCOMO equations were obtained by analyzing a data base of

63 software projects from mixed sectors of the software world (4:83).

Boehm developed three different versions of COCOMO. One, Basic

COCOMO, is the most simple to use and most useful in the early stages of

the life cycle when little is known about the project and rough estimates

are sufficient (4:58). Intermediate COCOMO incorporates an additional

16 predictor variables to more accurately estimate cost and schedule

(4:114). Detailed COCOMO uses the equations from Intermediate COCO-

MO and adds a three level hierarchy to estimate software development

projects from the ground up (4:348).

Boehm developed his 16 variables from reading various studies and

reducing the number of candidates using two main tests:

1) General Significance--eliminated factors which were significant

only a small fraction of the time (4:115).

2) Independence--eliminated factors which were strongly correlated

with product size and compressed a number of factu.s which tend to be

correlated to a single factor (4:115).

The resulting factors in Intermediate COCOMO are broken into

four general categories: software product attributes, computer attributes,

personnel attributes, and project attributes (4:115). The factors for each

category are listed in Table 4.

27

The Intermediate COCOMO software development model begins by

Table 4
COCOMO Factors by Category

Product Attributes

Software Reliability (RELY)
Data Base Size (DATA)
Product Complexity (CPLX)
Requirements Volatility (RVOL)
*Required Reusability (RUSE)

Computer Attributes

Execution Time Constraint (TIME)
Main Storage Constraint (STOR)
Virtual Machine Volatility (VIRT)
Computer Turnaround Time (TURN)

Personnel Attributes

Analyst Capability (ACAP)
Applications Experience (AEXP)
Programmer Capability (PCAP)
Virtual Machine Expe-'ence (VEXP)
Programming Language Experience (LEXP)

Proiect Attributes

Modem Programming Practices (MODP)
Use of Software Tools (TOOL)
Required Development Schedule (SCED)

*Management Reserve (MRES)
*Security Requirements (SECU)

Note: Requirements Volatility was added in 1986

'denotes factors used in REVIC but not in
Intermediate COCOMO

28

generating a nominal effort estimate using the following equations:

1)M - A (KDS 8 1F,
2)TDEV- C (MM)o0

Equation 1 predicts the manpower (MM) in man-months based on the esti-
mated lines of code to be delivered (KDSI is an acronym for Thousand
Delivered Source Instructions) and the product of environmental factors Fi.
The Coefficients (A, B, C, and D) and the factors (Fi) are determined by
statistical means from a data base of completed projects. ... The results
from equation 1 are put into equation 2 to determine the resulting sched-
ule (TDEV is an acronym for Time for Development) in months needed to
perform the complete development (29:1).

The output of Intermediate COCOMO is the level of effort in

person-months (4:115). A COCOMO person-month consists of 152 hours

of working time which takes into account time off due to holidays, vaca-

tion, and sick time (4:59). COCOMO estimates in person-months rather

than dollars because of "the large variations between organizations in what

is included in labor costs..." (4:61).

In the sphere of schedule COCOMO forecasts the "average labor

level estimates for each software development phase ... "using the

Rayleigh Distribution (4:67). Boehm found the Rayleigh curve to be a

"reasonably good fit for portions of the manpower distribution... with the

main exception of its zero-level behavior at the start of the project" (4:93).

Thus, COCOMO uses a modified form of the Rayleigh curve as its basis

for schedule estimation.

29

SASET. The Software Architecture Sizing, and Estimation Tool is a

model developed for the Naval Center for Cost Analysis by Martin Mar-

ietta Denver Aerospace Corp. and is a "forward chaining, rule-based expert

system utilizing a hierarchically structured knowledge database of normal-

ized parameters to provide derived software sizing values by functionality,

an "optimal" software development schedule, and associated manloading

charts (31:1-2)". This system combines the best features of bottom's-up

estimating and parametric methodology (31:1-2).

SASET wields a three tiered approach to system identification with

a fourth tier dedicated to maintenance and a fifth tier to risk analysis (31:1-

2). The first tier addresses the class of software, the programming lan-

guage, the development schedule, and other environmental issues (31:1-2).

This data is used to generate a Software Budget Multiplier and a Software

Schedule Multiplier (31:I1-1).

The second tier specifies the functional aspects of the system which

then are used to forecast the size of the software (31:1-2). The functional

inputs include whether the software is generated from scratch or modified

from existing sources, and the language used (31:1-2). An alternative is to

enter the size of the system directly which is then used to generate prelimi-

nary budget and schedule forecasts (31:1-3).

The third tier describes the software complexity issues of the

hardware/software system including system timing and criticality, and

30

documentation required (31:1-3). The inputs from this tier are used to

generate a Software System Budget Multiplier and Software System Sched-

ule Multiplier which are used to generate the final budget and schedule

predictions (31:111-11).

The fourth tier addresses the maintenance life cycle and requires

entry of 17 complexity factors (31:1-3). The fifth tier provides risk analysis

on sizing, schedule, and budget data through the use of user entered

distribution parameters and Monte Carlo simulation (31:1-3).

The final schedule that is generated is based on the size of the

software available in tier two and an average of the Software Schedule

Multiplier from tier one and the Software System Schedule Multiplier from

tier three (31:111-17). Final schedule estimates span from a Systems

Planning Review to an Acceptance Review (31:VI-13).

Output reports include sizing estimates, schedule estimates, man-

loading estimates, effort estimates, budget and schedule factors, tier input

review, maintenance and risk assessment (31:iv).

SEER. System Evaluation and Estimation of Resources is a model

published by Galorath Associates, Inc. and is based on the work of Randall

Jensen (17:V-1). Dr. Jensen first published his software estimation model

in a paper titled "An Improved Macrolevel Software Development Re-

source Estimation Model". Using a technology constant based on technolo-

31

gy input parameters and the Rayleigh-Norden curve, SEER computes the

required software development effort in staff-months and dollars (28:1).

SEER uses four primary inputs plus development constraints to

generate the schedule and effort for Software Requirements Analysis

through CSCI Integration and Testing (17:V-8). The primary inputs are

effective size to include both new code and software to be modified,

effective technology rating which accounts for variations observed in

schedule and effort for similar projects, complexity which encompasses

differences in operating systems and interfaces, and the staffing rate (17:V-

8-V-9).

The primary inputs for SEER are presented in a Microsoft Windows

environment and each input requires three values; one for lowest likely

value, one for most likely value, and one for the highest likely value (17:X-

1). Galorath and Associates purports that this method of data entry

permits the users to bound the risks and uncertainty in the parameter itself

(17:X-1). Inputs for SEER fall under the following parameter categories:

size or source lines of code (SLOC), personnel capabilities, development

support environment, product development requirements, product reusabili-

ty requirements, development environment complexity, target environment,

and schedule (17:Appendix E).

Some of the key reports produced by SEER include: a Quick

Estimate Report, a Basic Estimate Report, a Maintenance/Operation

32

Support Report, an Inputs Report, a Staffing by Month Report, a Cost by

Month Report, and a Cost by Activity Report (17:XI-1-XI-2). Reports

regarding the projects risk include a Risk by Cost Report, a Risk by Person

Months Report, and a Risk by Schedule Report (17:XI-2).

SEER contains a Quick Estimate Window which is on screen at all

times. This window contains the estimates for schedule months, effort

months, base year cost, effective size, and the life cycle phases included in

the estimate (17:11-3). The window will show the effect that each param-

eter has on the estimates as they are input by updating the estimates after

data entry.

The schedules generated by SEER include software requirements

analysis, software design through CSCI test complete, software integration

through operational test and evaluation, and software maintenance/-

operational support (17:XI-6). The on screen Quick Estimate may be

easily modified to include only the portions of the schedule required by

using the Estimate/Quick Estimate Options from the menu (17:VIII-9).

SLIM. Software Life Cycle Model (SLIM), a model developed by

Quantitative Software Management, Inc., is based on the work of Putnam

(36:xx). The algorithm's used in SLIM require the use of descriptive

information about the system being developed and the organization's

capabilities to code the effort (36:111-4). The system information required

includes the availability of target computer memory, the application type

33

being coded, and the languages used (36:111-4). The developer information

includes personnel experience, software engineering techniques used, and

the general type of computer used in development (36:111-4).

The model may also employ two index numbers: a Productivity

Index and a Manpower Buildup Index (36:111-4). The Productivity Index

calibrates the model to the efficiencies of the developer while the Man-

power Buildup Index determines the maximum effective staffing rate for a

project (36:111-4). These indices may be calculated from a developer's

historical data or can be approximated by SLIM using industry averages

(36:11I-5).

The final input to SLIM is the size of the system to be developed in

SLOC (36:111-5). As in SEER, the model requires the smallest likely, the

most likely, and the largest likely values for this parameter (36:111-5).

The schedule generated by SLIM is a minimum time solution based

on a Monte Carlo simulation (36:111-6). Using a longer schedule than that

generated by SLIM will reduce the cost of the system (36:111-7). The costs

required will be calculated by SLIM if the required constraint, such as

maximum staffing, maximum cost, or acceptable reliability level, is input

(36:111-7).

SLIM reports include Life Cycle Reports covering schedule, effort,

staffing levels, milestones, and cashflow, Risk Analysis Reports covering

probability profiles for meeting schedule and effort, a Work Breakdown

34

Plan, a Code Production Plan, a CPU Usage Plan, a Reliability Plan

forecasting defects, and a Documentation Plan estimating the number of

pages of documentation (36:VIII-1-VUI-67). The model also prints charts

displaying the above results, as well as a Gantt Chart for managing the

project (36:VIII-I-VUII-67).

SPQB/20. This model is marketed by Software Productivity Re-

search, Inc., and is based on the work of Capers Jones. The acronym,

"SPQR", stands for software productivity, quality, and reliability; the

primary outputs of the model. The "20" refers to twenty multiple-choice

and other questions which must be answered by the user for model inputs

which describe the user's experience, development methods, and environ-

ment (42:2).

Features of the model include the number of source code state-

ments required for a project or the number of function points, the develop-

ment schedules by phase, the development effort and the staff sizes by

activity (42:2). SPQR/20 also predicts the number of defects which can be

expected in the project, the number that can be removed by various tests,

and the number which can be expected to remain in the product on

delivery (42:2). SPQR/20 also predicts the quantity of documentation

required to support the developed system (42:2).

The major included and excluded activities for SPQR/20 are shown

in Table 5 (42:2).

35

Table 5

SPQR/20 Activities

Included by SPOR/20 Excluded by SPOR/20

Planning User Effort

Requirements User Education

Design Quality Assurance

Coding Hiring and Moving

Integration Production Costs

Testing Field Service

Documentation Customer "Hot Lines"

Management Travel Expenses

Central Maintenance Capital Equipment

Enhancements Staff Education

The developers of SPQR/20 foresaw that one or more of the above

activities that are excluded by the model could be a cost driver. Software

Productivity Research, Inc. provides an input called "Other Costs" which

may be used to pass the costs estimated for the excluded activities to the

project cost (42:3).

SPQR/20 can provide an estimate of schedule based on thousands

of lines of code (KLOC) or can provide an estimate of schedule and lines

36

of code based on function points (42:37). (The theory of function points

has been discussed earlier.)

According to the SPQR/20 manual, the advantages of the function

point technique are that 1) Function points are independent of source code

and do not penalize higher order languages, 2) function points can be

applied early in the program life cycle, and 3) function points can be used

to predict source code size (42:69). The disadvantages listed are 1) there is

substantial ambiguity in the exact definition of function point parameters

and 2) the treatment of complexity was purely subjective using a range of

±25% (42:70).

SPQR/20 outputs include risk and quality estimates, defect removal

and reliability estimates, the main development and maintenance cost

estimates, and normalized managerial information (42:46).

Sytem-4. System-4 is a software cost estimating model developed

by Computer Economics, Inc. (CEI) and is based on the work of Randall

Jensen (7:1-4). Just as in SEER, System-4 uses a technology constant

based on technology input parameters and the Rayleigh-Norden curve, to

compute the required software development effort in staff-months and

dollars (28:1).

CEI first developed a model for software estimation in 1979. JS-1

and JS-2 preceded System-3 which in turn was followed by System-4 (7:1-4).

37

The primary inputs for System-4 require three values; one for lowest

likely value, one for most likely value, and one for the highest likely value

(7:IV-4). Inputs for System-4 fall under the following parameter catego-

ries: size or source lines of code (SLOC), developer personnel, developer

environment, target computer environment, product development environ-

ment, development support environment, and program schedule (7:Input

Sheet).

Some of the key reports produced by System-4 include: an Input

Parameter Report, a Summary Report which includes schedule and cost, a

Cost Spread Report which provides detailed cost breakdowns by task phase

and labor category, a Staffing Report, and a Risk Analysis Report (7:VIII-

2-VII-7).

System-4 contains a Solution Window which is on screen at all

times. This window contains the estimates for Design Implementation and

Test (DIT) schedule, Full Scale Development (FSD) schedule, FSD cost,

peak staff, lines of coding per month, technology rating and effective size

of the project (7:IV-5). The window will show the effect that each param-

eter has on the estimates as they are input by updating the estimates after

data entry.

The schedule generated by System-4 includes software requirements,

architectural design, detailed design, code and unit test, integration and

test, and system integration and test (7:VII-28). The on screen Solution

38

Window carries the total times for Design Implementation and Test (which

includes architectural design, detailed design, code and unit test, and CSCI

integration and Test) and Full Scale Development (which includes the

portions scheduled in DIT as well as software requirements and system

integration and test (7:VII-28).

Previous Efforts

There have been a handful of early efforts to evaluate the accuracy

of model schedule estimates. Among these has been a study by Illinois

Institute of Technology Research Institute (UTRI), an evaluation by

MacDonald Dettwiler and Associates (31) (both including schedule among

other measures to rate), an AFRIT thesis by Captain Crystal Blalock (2), and

a report for the US Army Aviation Systems Command (23).

IT Research Institute. The study by HT Research Institute com-

pared the ability of six models, Ada COCOMO, Softcost Ada, PRICE-S,

System-3, SPQR/20, and SASET, to estimate the cost and schedule of Ada

projects (26vii). 1TRI used a data base of eight completed Ada projects

from various sources to test the models. The results were broken down

into six categories: 1) overall effort, 2) overall schedule, 3) government

contracts, 4) commercial contracts, 5) command and control applications,

and 6) tools and environment applications (26:vii-viii).

The results indicate that System-3 and Price S are the most accurate

models for schedule estimation for the data base studied. Estimates using

39

System-3 were within 30% of actuals on four of the eight projects while

estimates using Price S were within 30% on three of the eight (26:ix). The

test results, however, can not be generalized because all of the projects

were Ada projects and the data base was very limited.

MacDonald Dettwiler and Associates. The evaluation performed by

Rick Martin at MacDonald Dettwiler and Associates tested the Before

You Leap Model (based on COCOMO), WICOMO (based on COCOMO),

System-3, and SPQR/20 (31:49). Martin used a data base of seven com-

pleted projects from the MacDonald Dettwiler company to compare the

models. The models were ranked in the areas of user interface, input data

required, output data meaning, and accuracy of cost and schedule predic-

tions (31:49).

Results for the models in this study were tabulated in a slightly

different manner than the IITRI study. The estimates were compared to

the actual schedules using the method of Least Squares Best Fit, with the

actual schedule being treated as the independent variable (31:50). The

results showed the Before You Leap Model of COCOMO to be the most

accurate (lowest Standard Error of the Estimate) followed by SPQR/20

(31:50). As a comparison for the ITRI study, all errors for the Before

You Leap Model were within 30%, and all but one of the seven were

within 30% for SPQR/20.

40

This analysis has the same weak point pointed out above in that no

inference may be made on the basis of a test using seven data points.

Additionally, the test cases were all accomplished at the same company,

indicating the accuracy of the models may not be implied to other agencies.

CatBlaloc. An AFIT thesis accomplished by Capt. Crystal

Blalock was directed specifically at determining the accuracy of models at

estimating schedule for software development projects. Blalock, as a

potion of her thesis, tested COCOMO, PRICE-S, System-3, SoftCost-R,

and SPQR/20 (2:37). The study used one data point representing the

average project from a 31 point data base.

The results showed that all of the models except COCOMO were

reasonably competent at estimating the data point. All of the models

estimates were within 20% except the COCOMO model used (calibrated

for Electronic Systems Division). System-3 was the most accurate (2:87).

This study exhibits the same flaw mentioned above. It was limited

in its scope to a small data base (in this case extremely small). Because

the study used only one point it also did not use any statistical analysis of

results.

US Army Aviation Systems Command. Richard M. Greathouse and

Kelly L Shipley published a report for the Directorate for Systems and

Cost Analysis at the US Army Aviation Systems Command comparing the

schedule estimating accuracy of four models. The four models chosen were

41

SECOMO (an adaptation of Boehm's COCOMO), REVIC, PRICE-S, and

SASET (23:1-2). The study used 12 data points to compare the models

(23:3).

The study concluded that SASET was the most accurate estimator

of schedule, while SECOMO underestimated and PRICE-S and REVIC

overestimated the required schedule (23:4). The study further found that

the three less accurate models drastically overestimated the Preliminary

Design phase of the software development life cycle (23:4). When this

error was removed PRICE-S and REVIC had less variance in the estimate

than SASET, the best estimator (23:5).

This study is the diost convincing one to date. The data base

consisted of 12 data points which strengthens the study. Also the evalua-

tors used some statistical analysis with which to judge the models. The

analysts, however, used the average of the resulting schedules to evaluate

the accuracy of the models. This is not necessarily the best way to judge

the precision.

42

El. Methodology

To discover what available programs best estimate software develop-

ment schedule requires modeling historical data. The first step to be taken

will be to obtain information concerning what software development

schedule estimators are available to the Air Force. A source of this

information was the faculty at the Air Force Institute of Technology and

analysts at Electronic Systems Division and Aeronautical Systems Division.

After locating these, it was necessary to find out which may be purchased

or borrowed by AFIT for evaluation (this special purpose software can be

very expensive).

The selection of models was based on the availability of documenta-

tion regardin, the schedule generation conducted by the model and the

availability of the model itself. Models considered for use were:

1) PRICE-S

2) Ray's Enhanced Version of Intermediate COCOMO (REVIC)

3) SASET

4) SEER

5) SLIM

6) SPQR/20

7) System-4

43

Concurrent with the investigation for models to test was an Air

Force Wide search for an available data base of accurate measurements

from authentic software engineering efforts.

Once these two objectives were met, the information from the data

base was interpreted for each of the selected models. This was necessary

because each model uses its own set of environmental factors as input

which aren't necessarily the same from model to model. Since Professor

Ferens is a recognized expert in this field, his help was solicited.

The data was then run in each model to generate an estimate of the

development schedule. For those categories of input for which no data was

available within the data base, the default values supplied by the model, if

any, were used. For those instances in which the data base had an appro-

priate category but the data was missing, a nominal rating was assumed for

that parameter. The PRICE-S value used for PROFAC (Productivity

Factor) was 4.00. The default parameter sets used in the models were

predominantly command and control, and radar, to match the types of

projects being estimated.

Once this estimate had been obtained for each set of data, the

results were normalized to match the portions of the life cycle reflected in

the data base (in this case, the portions of the life cycle used in CO-

COMO). Normalization was needed because the models each forecasted

44

different sections of the software life cycle. The estimates were then com-

pared to the actual schedule for each project.

I=ets

Various statistical tests were used, both parametric and non-parametric, to

evaluate which of the models was most accurate at projecting the develop-

ment schedule. They include Least Squares Best Fit (LSBF) using a linear

relation (Actual = A1 *Estimate + A 0), Least Squares Best Fit using a log-

log relation (Actual = f 0*Estimate)'p 1), the Wilcoxon Test, the Friedman

Rank Sum Test, and the percentage method used by various developers to

evaluate models (within X% of the Actuals Y% of the time). Levels of

uncertainty (a s) of .05 and .01 were used for all tests unless otherwise

specified.

Linear Least Squares Best Fit. The statistical method of Least

Squares Best Fit was used to discover which model is best at estimating the

required software engineering schedule. The seven basic assumptions

which must be met in order to use the method of Least Squares are listed

in Table 6.

A hypothesis test was performed on the significance of the relation-

ship for each model. To execute this test the F Ratio is used. The F

Ratio is a measure of the relationship between x and y. If this is large, it

means that x and y seem to have a significant relationship. The F Ratio is

used to test the hypothesis of whether the estimated schedule is related to

45

Table 6

Least Squares Assumptions

1) Thee s (error terms) of the relation are normally distrib-

uted.

2) Thee s have a variance ofa 2, in which a 2 is a constant.

3) The expected value of thee s equals 0.

4) Thee s are independent (not correlated with each other).

5) The sample data selected are truly representative of the

population.

6) The sample data are random.

7) The independent variables are independent of each other.

the actual schedule at a significant level. We may state this in this way:

Ho:I= 0

H. :0i" 0

in which 11 is the slope of the estimating equation. If the null hypothesis

cannot be rejected, this means that this data does not support the existence

of a significant relationship between the actual schedule and the estimated

schedule.

The comparison among the models was done on the basis of the

amount of variation explained by all the statistically significant models.

This may be measured by the Coefficient of Determination (also known as

46

R2). This is defined as the proportion of the total variation that is ex-

plained by the model (the Sum of Squares of the Residuals divided by the

Sum of Squares of the Total, or SSR/SST).

Log-Log Least Squares Best Fit. There is some question whether

the error terms have a constant variance over the range of the population.

Some experts believe that the error terms increase as the estimate gets

larger (16). This problem may be solved by performing a LSBF on the log

of the Estimates versus the log of the Actuals. A hypothesis test was used

as described above, and the Coefficient of Determination was used to

judge the strength of the relationship.

Wilcoxon Sign Test. The Wilcoxon Sign Test is used to investigate

for bias. The test requires finding the differences of the estimate schedules

and the actual schedules, and ranking the differences. The ranldngs are

then divided up into positive and negative columns and the ranks of the

columns are summed. The smalle -f the two results is called the Wil-

coxon T statistic. The standard normal distribution is then used to test

whether the mean of the differences is zero (there is no bias) versus the

mean is not zero (there is bias).

If the T statistic is large enough, it suggests that the rankings of the

positive and negative differences are more or less equal. This would be

expected if there were no bias in the model. A biased model would create

estimates which are usually high or low, creating a majority of ranks in one

47

column or the other, generating a Wilcoxon T statistic that is low (the

lower rank is used as the value) (34:398-401).

Friedman Rank Sum Test. The Friedman Rank Sum Test may be

used in two different ways. In both methods the actuals and the estimates

are placed in a table and each observation is considered individually. The

estimates and the actual value for each observation are ranked in size with

the smallest being one. The ranks for each model and the actuals column

are summed across all observations.

In the first use of these figures, the rank sums are used to calculate

an S statistic which is computed as follows:

$"kk 21 I-,1

in which n = the number of observations in the columns

k = the number of columns

and R = the ranks of the various columns

The S statistic is then tested versus a x 2 statistic for a given level of

uncertainty (a) for k-i degrees of freedom. If S . is greater than the Z 2

value, we reject the null hypothesis which is that all of the data sets

(actuals and all model estimates) are the same.

The S statistic is basically a test of whether or not all of the ranks

are approximately equal. If this were the case it could be inferred that the

48

rankings of the model's estimates and the actual values were purely

random and that all columns were relatively equal. If the rankings differ

significantly, it may be concluded that there is a disparity between the

column's values (25:139-141).

In the second use of these figures, the rank sums of the estimates

are compared to the rank sum for the actuals column to detect if there is a

significant difference between each rank (each set of estimates versus the

actuals). Each of the differences (actual rank sum versus estimate rank

sum) is compared to an m* statistic derived using an m statistic from a

table. The equation is as follows:

z[~ 8 kkl]

in which n = the number of observations in each column

and k = the number of columns

If the difference is greater than the computed m* value, the null hypothesis

(that both sums are equal) is rejected.

The m* statistic is similar to the S statistic discussed above. If the

value is small this implies that the rankings are approximately equal and

there is no difference between the two columns. If the ranks diverge pro-

foundly, the test will fail and it may be deduced that the two columns are

not roughly the same (25:155-157).

49

Percentage Method. The estimated schedules are divided into the

actual schedules and are compared to a predefined percentage. The

models are then compared to see how often each has estimated within the

predefined percentage. This is the method used by many model developers

to tout their products because this method is the easiest to use and to

understand.

50

IV. aig

Model Selection

Five models were selected for this study. Several models were

considered but were rejected for a number of reasons. SASET was not

chosen because of the time involved in learning and running the model.

The evaluator did not feel comfortable with the amount of time available

to learn this complex model. Further, the model is not available outside

the Department of Defense and it was hoped that the results of this thesis

would be of broader application.

The SLIM model was not chosen because that model is no longer

available at the Air Force Institute of Technology.

Data Base Selection

First, the Ballistic Missile Office of Norton AFB was contacted to

investigate as to whether the data base that was used to develop the

Ballistic Missile Office Software Cost Model was available. However, the

data used to develop that model is not Air Force data and is the same data

used by Dr. Boehm to develop his COCOMO model. The Electronic

Systems Division of Air Force Systems Command was then contacted to

examine their software cost data base. However, the data maintained by

the Electronic Systems Division, while beneficial, was not of sufficient

detail to run the models required in this thesis. The MITRE corporation

51

was then contacted to inquire about their data base developed from Elec-

tronic Systems Division programs. This data base was chosen because of

its availability and completeness of parameters.

Data Base

The data base consisted of 26 projects performed by various con-

tractors for the Electronic Systems Division of Air Force Systems Com-

mand. Of the 26 projects, 21 data points contained the actual schedules

experienced during development. The size of the projects ranged from

nine thousand to over one million lines of code.

The projects' mission descriptions were primarily command and

control systems and radar systems. There were a few simulation and

training systems. Schedules ranged from 13 to 84 months. Unfortunately,

the data are proprietary and could not be reported with the results.

Because of this, the output runs were also not included.

Linear Least Squares Best Fit

The models all generate significant F values at both 95% and 99%

levels of confidence, which indicate that in all cases, the model is a better

estimator than the historical averages. However, the fits produced are not

very good. The coefficients of determination (R2) ranged from approxi-

mately 0.31 to 0.43, meaning less than half of the total -..,iation is being

explained by the regression line. Results are shown in Appendix A.

52

Log-LoJg Least Squares Best Fit

Just as in the linear least squares best fit, all of the estimators were

significant at the 95% and 99% levels of confidence, yet the actual fit

produced by the estimators was not good. In the case of a log-log least

squares, the coefficients of determination ranged from 0.34 to 0.49. Once

again, none of the estimators explained more than 50% of the total varia-

tion from the actuals. Results are shown in Appendix B.

Wilcoxon Test

The Wilcoxon Test indicated that there was bias in all model

estimates except for that of System-4 at 95% and 99% level of confidence,

and PRICE-S only at 99% level of confidence. Detailed results are in

Appendix C.

Friedman Rank Sum Test

The Friedman Rank Sum Test was first used to identify whether or

not all of the estimates and the actuals were approximately equal. This

would be indicated by all of the ranks being about the same (no one data

set would be predominately high or low). The test indicates that this is not

the case. The S statistic that was calculated was 47, while the Z2 statistic

against which to test the S was 11 at 95% confidence and 15 at 99%

confidence. This demonstrates that there are differences between the

columns. This test gives no indication of which are different.

53

The second use of the Friedman Rank Sum Test compares the rank

sum of the data set of interest (in this case, the set of actual schedules)

against all of the rank sums of the other data sets. The difference is then

compared to an m* statistic. The data set from System-4 easily passes the

test while PRICE-S barely passes the test at the 95% level (PRICE-S

would not pass at any smaller confidence level). REVIC passes only at the

99% level. This means that the data in the System-4 column and the

Actuals column can be considered about equal, as can PRICE-S and the

actuals, and REVIC and the actuals at the 99% level of confidence (see

Appendix D).

Percentage Method

The percentage method was administered twice (see Appendix E).

Initially the percentage used to compare the models was 30%. Using this

band around the actuals, System-4 showed itself to be within 30% of the

actuals 71% of the time. The next closest estimators were REVIC and

SEER, being within 30% of the actuas 33% of the time.

The analyst wished to find out how well the estimators forecasted a

little closer to the actuals so the percentage was lowered to 20%. When

this was done System-4 and SEER tied for the best estimators at 28.6%.

This indicates that within this 10% band (from 20% to 30%), SEER only

captured one more observation while System-4 captured nine more).

54

A common method used by price analysts in evaluating a contract

proposal is to apply a decrement factor to the proposal for any known

overestimation. Since all the models but System-4 were known to overesti-

mate (Appendix C), this method was applied to the results of the models to

observe whether the models could be adjusted to produce a better estimate

band than System-4.

The models were evaluated to detect the average percentage that

was overestimated. The inverse of this number was then multiplied by all

of the ratios of estimates to actuals. As can be seen in Appendix F, when

this process was used all of the models forecasted better within the 20%

band (REVTC, PRICE-S, and System-4 were significantly better). Within

the 30% band, all of the models forecasted closer to the actuals except for

System-4, which got worse. This is due to the inverse multiplier being

affected by extreme values, forcing the borderline cases (project numbers

two and four for example) outside the band. In no case, however, were

any of the models more accurate than System-4 within the 30% band.

It was then postulated that a similar situation regarding the influ-

ence of extreme data points may occur with the other models. There might

be different percentages which could be used to adjust the other models

which would generate better estimates than those shown with the inverse.

In this case the analysis was held to a 30% band because the 20% band

55

required more adjustments than would normally be used and a model was

already good at estimating within the 30% band.

The percentage decremented was varied in 10% increments for all

models except System-4, which was used as a baseline. The models all

approached the accuracy of System-4 until they peaked using a 40-50%

decrement. At that point all of the models started to further deviate from

the actuals agal-. Once again, no model forecasted as closely to the

actuals as System-4.

56

It was then conjectured that perhaps one segment of the software

development life cycle estimates was affecting the accuracy of the models.

The average deviation from the actuals by life cycle segment by model is

Graph of Average Deltas
By Life Cycle Portion

45
40

.5 3 0

c 25
.9
'6 20
1o5

10o- 5

0
Sart PD DO CUT IT

ScdUo Pcrfian

-GW FEWi Price S -*-SE
-40.- System 4 - SPQR/20

Fi gure 2
Life Cycle Estimate Comparison

shown in Figure 2. The acronyms used are explained as follows:

PD stands for Preliminary Design

DD stands for Detailed Design

CUT stands for Code and Unit Test

and IT stands for Integration and Test.

A model which produced no deviation from the actuals would be a

straight line along the X axis. System-4, which emerges as the most

57

accurate model by all of the non-parametric tests, produces a line closest to

this ideal. It is evident that if the deviation from the actual schedules

during the Preliminary Design portion of the life cycle could be removed

from REVIC and PRICE-S, they would be roughly as accurate as System-4.

58

V. Conclusions and Recommendations

Conclusions

Much research has been done in the field of software development

but little in the realm of schedule accuracy. A few studies have been

performed in this area but all were flawed on various grounds. For this

reason five software development models were evaluated using a data base

developed by MITRE for the Electronic System Division (ESD) of Air

Force Systems Command. The five models chosen were REVIC, PRICE-S,

SEER, System-4, and SPQR/20. Using the 21 data points from the ESD

data base which had a schedule identified, the models were run and data

evaluated both parametrically and non-parametrically. While no model

was shown to be a better predictor than any other on the basis of paramet-

ric measures, System-4 proved overwhelmingly to be the best using non-

parametric tests. It was also found that REVIC and PRICE-S could essen-

tially match System-4 if the overestimation in the Preliminary Design phase

of the software development life cycle could be negated through calibration

or some other mode. In PRICE-S this is possible through the use of

schedule phase multipliers. REVIC has not yet implemented a method to

adjust the schedule phase distributions.

59

Recommendations

Further research in the area of schedule determination for software

development programs is needed in order to help estimators more accu-

rately calculate these schedules. There are other models available which

were not used because of various reasons. The Electronic System Division

data base should be run in those models to test their accuracy against the

results encountered in this study.

It would also be beneficial to locate another data base to test the

models used. The results from this study can only be applied to similar

programs to those in the data base used, command and control and radar

systems. A different data base would allow a more general application of

results.

Finally, it would be advantageous to test the models using the

Electronic System Division data base in the method used for this study, but

with the analyst calibrating the models with a portion of the data base.

This method would test the models as a true expert would use them, in a

mode calibrated to calculate the types of projects being estimated.

60

Appendix A: LSBF Analysis

Input Data

Project # REVIC SPQR/20 System 4 SEER PRICE-S Actuals

1 32.3 36.9 28.5 31.6 45.7 29.0
2 19.7 35.7 19.0 22.2 22.8 21.0
3 28.0 29.1 23.0 30.8 30.4 18.0
4 25.6 28.2 24.1 30.3 36.9 33.0
5 25.9 39.9 13.5 26.8 29.3 13.0
8 61.1 86.1 44.6 66.7 48.0 68.0
9 62.0 109.9 44.9 62.7 43.9 71.0
10 141.9 116.1 107.3 158.0 131.6 84.0
11 51.9 73.0 30.4 55.3 39.2 22.0
12 61.8 77.1 45.9 68.0 53.2 75.0
13 71.1 103.1 52.6 62.5 62.7 43.0
14 54.7 83.7 55.2 54.1 42.6 23.0
15 143.3 83.4 99.9 165.2 114.9 41.0
17 42.8 68.9 27.0 45.7 44.1 22.0
18 52.8 69.9 34.6 56.7 48.8 31.0
19 53.5 74.2 30.0 66.7 50.0 40.0
20 40.3 84.0 26.1 48.7 54.9 26.0
21 42.3 64.5 30.9 42.6 34.2 33.0
22 46.1 70.9 31.4 50.6 44.8 25.0
23 56.3 71.6 25.4 69.2 55.1 33.0
24 39.5 30.9 23.2 46.1 36.3 26.0

LSBF Results

REVIC Regression Output:
Constant 16.67358
Std Err of Y Est 16.40234 SSE = 5111.696
R Squared 0.364714 SST - 8046.286
No. of Observations 21 SSR - 2934.59
Degrees of Freedom 19

F - 10.90777
X Coefficient(s) 0.375546
Std Err of Coef. 0.113709 F(.95,1,19) 4.38

F(.99,1,19) 8.19

61

SPQR/20 : Regression Output:
Constant 3.031709
Std Err of Y Est 15.55677 SSE - 4598.251
R Squared 0.428525 SST = 8046.286
No. of Observations 21 SSR - 3448.035
Degrees of Freedom 19

F - 14.2473
X Coefficient(s) 0.50034
Std Err of Coef. 0.132556 F(.95,1,19) 4.38

F(.99,1,19) 8.19

System 4: Regression Output:
Constant 17.17003
Std Err of Y Est 16.12817 SSE - 4942.24
R Squared 0.385774 SST - 8046.286
No. of Observations 21 SSR - 3104.045
Degrees of Freedom 19

F - 11.93322
X Coefficient(s) 0.51686
Std Err of Coef. 0.149621 F(.95,1,19) 4.38

F(.99,1,19) 8.19

SEER : Regression Output:
Constant 18.26531
Std Err of Y Est 16.76138 SSE - 5337.936
R Squared 0.336596 SST - 8046.286
No. of Observations 21 SSR = 2708.35
Degrees of Freedom 19

F - 9.640177
X Coefficient(s) 0.357162
Std Err of Coef. 0.115033 F(.95,1,19) 4.38

F(.99,1,19) 8.19

Price-S : Regression Output:
Constant 15.42216
Std Err of Y Est 17.09459 SSE - 5552.277
R Squared 0.309958 SST = 8046.286
No. of Observations 21 SSR - 2494.009
Degrees of Freedom 19

F - 8.534546
X Coefficient(s) 0.429338
Std Err of Coef. 0.146964 F(.95,1,19) 4.38

F(.99,1,19) 8.19

62

Appendix 8: Log-Log Analysis

Project # REVIC SPQR/20 System 4 SEER PRICE-S Actuals

1 1.509 1.567 1.455 1.499 1.660 1.462
2 1.294 1.553 1.279 1.347 1.358 1.431
3 1.447 1.472 1.362 1.488 1.483 1.255
4 1.408 1.451 1.382 1.481 1.567 1.519
5 1.413 1.601 1.130 1.428 1.467 1.114
8 1.786 1.935 1.649 1.824 1.681 1.833
9 1.792 2.041 1.652 1.797 1.642 1.851
10 2.152 2.065 2.031 2.199 2.119 1.924
11 1.715 1.863 1.483 1.742 1.593 1.342
12 1.791 1.887 1.662 1.832 1.726 1.875
13 1.852 2.013 1.721 1.796 1.797 1.633
14 1.738 1.923 1.742 1.733 1.629 1.362
15 2.156 1.921 2.000 2.218 2.060 1.613
17 1.631 1.838 1.431 1.660 1.644 1.342
18 1.723 1.844 1.539 1.753 1.688 1.491
19 1.728 1.870 1.477 1.824 1.699 1.602
20 1.605 1.924 1.417 1.688 1.740 1.415
21 1.626 1.809 1.490 1.630 1.534 1.519
22 1.664 1.851 1.497 1.704 1.651 1.398
23 1.751 1.855 1.405 1.840 1.741 1.519
24 1.597 1.490 1.365 1.664 1.560 1.415

REVIC Regression Output:
Constant 0.435903
Std Err of Y Est 0.164697 SSE - 0.515375
R Squared 0.42555 SST - 0.897162
No. of Observations 21 SSR - 0.381787
Degrees of Freedom 19

F - 14.07511
X Coefficient(s) 0.643387
Std Err of Coef. 0.171493 F(.95,1,19) 4.38

F(.99,1,19) 8.19

SPQR/20 : Regression Output:
Constant 0.359679
Std Err of Y Est 0.17594 SSE - 0.588145
R Squared 0.344438 SST - 0.897162
No. of Observations 21 SSR - 0.309017
Degrees of Freedom 19

F - 9.982782
X Coefficient(s) 0.644941
Std Err of Coef. 0.204124 F(.95,1,19) 4.38

F(.99,1,19) 8.19

63

System 4: Regression Output:Constant 0.478035

Std Err of Y Est 0.155078 SSE - 0.456933
R Squared 0.490691 SST - 0.897162
No. of Observations 21 SSR - 0.44023
Degrees of Freedom 19 F - 18.30547

X Coefficient(s) 0.680146
Std Err of Coef. 0.158969 F(.95,1,19) 4.38

F(.99,1,19) 8.19

SEER : Regression Output:Constant 0.461073

Std Err of Y Est 0.165378 SSE - 0.519645
R Squared 0.420791 SST - 0.897162
No. of Observations 21 SSR = 0.377517
Degrees of Freedom 19 F = 13.80334

X Coefficient(s) 0.634176
Std Err of Coef. 0.170694 F(.95,1,19) 4.38

F(.99,1,19) 8.19

Price-S : Regression Output:
Constant 0.314083
Std Err of Y Est 0.174601 SSE = 0.579226
R Squared 0.35438 SST = 0.897162
No. of Observations 21 SSR = 0.317937
Degrees of Freedom 19 F = 10.42909

X Coefficient(s) 0.722572
Std Err of Coef. 0.223747 F(.95,1,19) 4.38

F(.99,1,19) 8.19

64

Appendix C: Wilcoxon Test

Wilcoxon Test - REVIC

Project # REVIC Actuals Delta Rank + Rank -

1 32.3 29.0 3.3 1
2 19.7 27.0 -7.3 3
3 28.0 18.0 10 7
4 25.6 33.0 -7.4 4
5 25.9 13.0 12.9 8
8 61.1 68.0 -6.9 2
9 62.0 71.0 -9 5

10 141.9 84.0 57.9 19
11 51.9 22.0 29.9 18
12 61.8 75.0 -13.2 9
13 71.1 43.0 28.1 17
14 54.7 23.0 31.7 20
15 143.3 41.0 102.3 21
17 42.8 22.0 20.8 13
18 52.8 31.0 21.8 15
19 53.5 40.0 13.5 11
20 40.3 26.0 14.3 12
21 42.3 33.0 9.3 6
22 46.1 25.0 21.1 14
23 56.3 33.0 23.3 16
24 39.5 26.0 13.5 10

SUMS 208 23

Wilcoxon T - 23

H. - center of paired differences of population distributions = 0
(ie no differences in the distributions)

p (T) - n(n+l)/4 - 115.5 Number of non-zero deltas >=20
therefore approximates normal curve

02(T) - n(n+l)(2n+l)/24 - 827.75

Test stat - (T - p)A' - -3.21508

z (.95) - 1.645
z (.99) - 2.33

Results of test - fail at both levels

65

Wilcoxon Test - SPQR/20

Project # SPQR/20 Actuals Delta Rank + Rank -

1 36.9 29.0 7.91 4
2 35.7 27.0 8.71 5
3 29.7 18.0 11.67 6
4 28.2 33.0 -4.77 2
5 39.9 13.0 26.9 8
8 86.1 68.0 18.13 7
9 109.9 71.0 38.93 14

10 116.1 84.0 32.07 10
11 73.0 22.0 50.99 18
12 77.1 75.0 2.08 1
13 103.1 43.0 60.13 20
14 83.7 23.0 60.69 21
15 83.4 41.0 42.4 15
17 68.9 22.0 46.9 17
18 69.9 31.0 38.88 13
19 74.2 40.0 34.2 11
20 84.0 26.0 57.98 19
21 64.5 33.0 31.49 9
22 70.9 25.0 45.88 16
23 71.6 33.0 38.59 12
24 30.9 26.0 4.93 3

SUMS 229 2

Wilcoxon T - 2

H. = center of paired differences of population distributions 0
(ie no differences in the distributions)

p (T) - n(n+1)/4 - 115.5 Number of non-zero deltas >=20
therefore approximates normal curve

02(T) - n(n+l)(2n+1)/24 - 827.75

Test stat - (T - p)/, - -3.94499

z (.95) - 1.645
z (.99) - 2.33

Results of test - fail at both levels

66

Wilcoxon Test - System-4

Project #System 4 Actuals Delta Rank + Rank -

1 28.5 29.0 -0.5 2.5
2 19.0 27.0 -8 11
3 23.0 18.0 5 7
4 24.1 33.0 -8.9 13
5 13.5 13.0 0.5 2.5
8 44.6 68.0 -23.4 17
9 44.9 71.0 -26.1 18
10 107.3 84.0 23.3 16
11 30.4 22.0 8.4 12
12 45.9 75.0 -29.1 19
13 52.6 43.0 9.6 14
14 55.2 23.0 32.2 20
15 99.9 41.0 58.9 21
17 27.0 22.0 5 8
18 34.6 31.0 3.6 6
19 30.0 40.0 -10 15
20 26.1 26.0 0.1 1
21 30.9 33.0 -2.1 4
22 31.4 25.0 6.4 9
23 25.4 33.0 -7.6 10
24 23.2 26.0 -2.8 5

SUMS 116.5 114.5

Wilcoxon T - 114.5

H. - center of paired differences of population distributions - 0
(ie no differences in the distributions)

p (T) - n(n+1)/4 = 115.5 Number of non-zero deltas >=20
therefore approximates normal curve

o2(T) - n(n+l)(2n+1)/24 = 827.75

Test stat - (T - p)/b - -0.03476

z (.95) - 1.645
z (.99) - 2.33

Results of test - pass at both levels

67

Wilcoxon Test - SEER

Project # SEER Actuals Delta Rank + Rank -

1 31.6 29.0 2.56
2 22.2 27.0 -4.77 4
3 30.8 18.0 12.79 6
4 30.3 33.0 -2.7 3
5 26.8 13.0 13.82 7
8 66.7 68.0 -1.35 5
9 62.7 71.0 -8.35 11
10 158.0 84.0 73.97 20
11 55.3 22.0 33.27 18
12 68.0 75.0 -7.01 9
13 62.5 43.0 19.46 8
14 54.1 23.0 31.12 17
15 165.2 41.0 124.16 21
17 45.7 22.0 23.7 13
18 56.7 31.0 25.66 15
19 66.7 40.0 26.69 14
20 48.7 26.0 22.73 12
21 42.6 33.0 9.64 2
22 50.6 25.0 25.56 16
23 69.2 33.0 36.22 19
24 46.1 26.0 20.1 10

SUMS 209 22

Wilcoxon T - 22

H. - center of paired differences of population distributions = 0
(ie no differences in the distributions)

p (T) - n(n+J)/4 - 115.5 Number of non-zero deltas >=20
therefore approximates normal curve

o2(T) - n(n+l)(2n+J)/24 - 827.75

Test stat - (T -j), - -3.24984

z (.95) - 1.645
z (.99) - 2.33

Results of test - fail at both levels

68

Wilcoxon Test - Price-S

Project # PRICE-S Actuals Delta Rank + Rank -

1 45.7 29.0 16.7 8
2 22.8 27.0 -4.2 3
3 30.4 18.0 12.4 6
4 36.9 33.0 3.9 2
5 29.3 13.0 16.3 7
8 48.0 68.0 -20 14
9 43.9 71.0 -27.1 18
10 131.6 84.0 47.6 20
11 39.2 22.0 17.2 9
12 53.2 75.0 -21.8 15
13 62.7 43.0 19.7 12
14 42.6 23.0 19.6 11
15 114.9 41.0 73.9 21
17 44.1 22.0 22.1 16.5
18 48.8 31.0 17.8 10
19 50.0 40.0 10 4
20 54.9 26.0 28.9 19
21 34.2 33.0 1.2 1
22 44.8 25.0 19.8 13
23 55.1 33.0 22.1 16.5
24 36.3 26.0 10.3 5

SUmS 181 50

Wilcoxon T - 50

H. - center of paired differences of population distributions = 0
(ie no differences in the distributions)

p (T) - n(n+l)/4 = 115.5 Number of non-zero deltas >=20
therefore approximates normal curve

a2(T) - n(n+l)(2n+l)/24 - 827.75

Test stat - (T - p)M = -2.27663

z (.95) - 1.645
z (.99) - 2.33

Results of test - fail at .95, pass at .99

69

Appendix D: Friedman Rank Sum

(Ranks in Parentheses)

Proj # Actuals REVIC SPQR/20 System 4 SEER PRICE-S

1 29 (2) 32.3 (4) 36.9 (5) 28.5 (1) 31.6 (3) 45.7 (6)
2 27 (5) 19.7 (2) 35.7 (6) 19.0 (1) 22.2 (3) 22.8 (4)
3 18 (1) 28.0 (3) 29.7 (4) 23.0 (2) 30.8 (6) 30.4 (5)
4 33 (5) 25.6 (2) 28.2 (3) 24.1 (1) 30.3 (4) 36.9 (6)
5 13 (1) 25.9 (3) 39.9 (6) 13.5 (2) 26.8 (4) 29.3 (5)
8 68 (5) 61.1 (3) 86.1 (6) 44.6 (1) 66.7 (4) 48.0 (2)
9 71 (5) 62.0 (3) 109.9 (4) 44.9 (2) 62.7 (4) 43.9 (1)
10 84 (1) 141.9 (5) 116.1 (3) 107.3 (2) 158.0 (6) 131.6 (4)
11 22 (1) 51.9 (4) 73.0 (6) 30.4 (2) 55.3 (5) 39.2 (3)
12 75 (5) 61.8 (3) 77.1 (6) 45.9 (1) 68.0 (4) 53.2 (2)
13 43 (1) 71.1 (5) 103.1 (6) 52.6 (2) 62.5 (3) 62.7 (4)
14 23 (1) 54.7 (4) 83.7 (6) 55.2 (5) 54.1 (3) 42.6 (2)
15 41 (1) 143.3 (5) 83.4 (2) 99.9 (3) 165.2 (6) 114.9 (4)
17 22 (1) 42.8 (3) 68.9 (6) 27.0 (2) 45.7 (5) 44.1 (4)
18 31 (1) 52.8 (4) 69.9 (6) 34.6 (2) 56.7 (5) 43.8 (3)
19 40 (2) 53.5 (4) 74.2 (6) 30.0 (1) 66.7 (5) 50.0 (3)
20 26 (1) 40.3 (3) 84.0 (6) 26.1 (2) 48.7 (4) 54.9 (5)
21 33 (2) 42.3 (4) 64.5 (6) 30.9 (1) 42.6 (5) 34.2 (3)
22 25 (1) 46.1 (4) 70.9 (6) 31.4 (2) 50.6 (5) 44.8 (3)
23 33 (2) 56.3 (4) 71.6 (6) 25.4 (1) 69.2 (5) 55.1 (3)
24 26 (2) 39.5 (5) 30.9 (3) 23 - {i) 46.1 (6) 36.3 (4)

Rank Sums 46 77 108 37 95 76

Avg for 5 72.6

H.: All data sets are the same
H.: Not all data sets are the same

S - 47.14966

X2x2 (5,.05) - 1
' (5,.01) - 15

Fails, therefore not equivalent at both levels

70

Actuals REVIC SPQR/20 System 4 SEER PRICE-S

Rank Sums 46 77 108 37 95 76

R1 vs Rn - 31 62 9 49 30

H.: Both compared data sets are equal
H.: The compared data sets are not equal

m (.05,5,.5) - 2.51, therefore test statistic m* - 30.4321
m (.01,5,.5) - 3.06, therefore test statistic m* - 37.1005

at .05 level: Different Different Same Different Same
at .01 level: Same Different Same Different Same

71

Appendix E: Percentage Method

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 1.11 1.27 0.98 1.09 1.58
2 0.73 1.32 0.70 0.82 0.84
3 1.56 1.65 1.28 1.71 1.69
4 0.78 0.86 0.73 0.92 1.12
5 1.99 3.07 1.04 2.06 2.25
8 0.90 1.27 0.66 0.98 0.71
9 0.87 1.55 0.63 0.88 0.62

10 1.69 1.38 1.28 1.88 1.57
11 2.36 3.32 1.38 2.51 1.78
12 0.82 1.03 0.61 0.91 0.71
13 1.65 2.40 1.22 1.45 1.46
14 2.38 3.64 2.40 2.35 1.85
15 3.50 2.03 2.44 4.03 2.80
17 1.95 3.13 1.23 2.08 2.00
18 1.70 2.25 1.12 1.83 1.57
19 1.34 1.86 0.75 1.67 1.25
20 1.55 3.23 1.00 1.87 2.11
21 1.28 1.95 0.94 1.29 1.04
22 1.84 2.84 1.26 2.02 1.79
23 1.71 2.17 0.77 2.10 1.67
24 1.52 1.19 0.89 1.77 1.40

Note: The values above are the estimated schedule divided
by the actual schedule. For example, on project #1, REVIC
estimated a schedule 11% longer than the actual schedule.

72

Is the estimate within 30%?

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 Pass Pass Pass Pass Fail
2 Pass Fail Pass Pass Pass
3 Fail Fail Pass Fail Fail
4 Pass Pass Pass Pass Pass
5 Fail Fail Pass Fail Fail
8 Pass Pass Fail Pass Pass
9 Pass Fail Fail Pass Fail
10 Fail Fail Pass Fail Fail
11 Fail Fail Fail Fail Fail
12 Pass Pass Fail Pass Pass
13 Fail Fail Pass Fail Fail
14 Fail Fail Fail Fail Fail
15 Fail Fail Fail Fail Fail
17 Fail Fail Pass Fail Fail
18 Fail Fail Pass Fail Fail
19 Fail Fail Pass Fail Pass
20 Fail Fail Pass Fail Fail
21 Pass Fail Pass Pass Pass
22 Fail Fail Pass Fail Fail
23 Fail Fail Pass Fail Fail
24 Fail Pass Pass Fail Fail

REVIC SPQR/20 System 4 SEER PRICE-S
Pass Pass Pass Pass Pass

REVIC SPQR/20 System 4 SEER PRICE-S
Fail Fail Fail Fail Fail

Pass 7 5 15 7 6
Fail 14 16 6 14 15

% Pass 33.3% 23.8% 71.4% 33.3% 28.6%

73

Is the estimate within 20%?

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 Pass Fail Pass Pass Fail
2 Fail Fail Fail Pass Pass
3 Fail Fail Fail Fail Fail
4 Fail Pass Fail Pass Pass
5 Fail Fail Pass Fail Fail
8 Pass Fail Fail Pass Fail
9 Pass Fail Fail Pass Fail
10 Fail Fail Fail Fail Fail
11 Fail Fail Fail Fail Fail
12 Pass Pass Fail Pass Fail
13 Fail Fail Fail Fail Fail
14 Fail Fail Fail Fail Fail
15 Fail Fail Fail Fail Fail
17 Fail Fail Fail Fail Fail
18 Fail Fail Pass Fail Fail
19 Fail Fail Fail Fail Fail
20 Fail Fail Pass Fail Fail
21 Fail Fail Pass Fail Pass
22 Fall Fail Fail Fail Fail
23 Fail Fail Fail Fail Fail
24 Fail Pass Pass Fail Fail

REVIC SPQR/20 System 4 SEER PRICE-S
Pass Pass Pass Pass Pass

REVIC SPQR/20 System 4 SEER PRICE-S
Fail Fail Fail Fail Fail

Pass 4 3 6 6 3
Fail 17 18 15 15 18

% Pass 19.0% 14.3% 28.6% 28.6% 14.3%

74

Appendix F: Adjusted Data

Raw Data

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 1.11 1.27 0.98 1.09 1.58
2 0.73 1.32 0.70 0.82 0.84
3 1.56 1.65 1.28 1.71 1.69
4 0.78 0.86 0.73 0.92 1.12
5 1.99 3.07 1.04 2.06 2.25
8 0.90 1.27 0.66 0.98 0.71
9 0.87 1.55 0.63 0.88 0.62
10 1.69 1.38 1.28 1.88 1.57
11 2.36 3.32 1.38 2.51 1.78
12 0.82 1.03 0.61 0.91 0.71
13 1.65 2.40 1.22 1.45 1.46
14 2.38 3.64 2.40 2.35 1.85
15 3.50 2.03 2.44 4.03 2.80
17 1.95 3.13 1.23 2.08 2.00
18 1.70 2.25 1.12 1.83 1.57
19 1.34 1.86 0.75 1.67 1.25
20 1.55 3.23 1.00 1.87 2.11
21 1.28 1.95 0.94 1.29 1.04
22 1.84 2.84 1.26 2.02 1.79
23 1.71 2.17 0.77 2.10 1.67
24 1.52 1.19 0.89 1.77 1.40

Avg 1.58 2.07 1.11 1.73 1.51

75

Adjustment 63.2% 48.4% 90.1% 58.0% 66.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.70 O.G2 .89 0.63 1.04
2 0.46 0.64 0.63 0.48 0.56
3 0.98 0.80 1.15 0.99 1.11
4 0.49 0.41 0.66 0.53 0.74
5 1.26 1.49 0.94 1.20 1.49
8 0.57 0.61 0.59 0.57 0.47
9 0.55 0.75 0.57 0.51 0.41
10 1.07 0.67 1.15 1.09 1.03
11 1.49 1.61 1.25 1.46 1.18
12 0.52 0.50 0.55 0.53 0.47
13 1.05 1.16 1.10 0.84 0.96
14 1.50 1.76 2.16 1.36 1.22
15 2.21 0.98 2.20 2.33 1.85
17 1.23 1.52 1.11 1.20 1.32
18 1.08 1.09 1.01 1.06 1.04
19 0.85 0.90 0.68 0.97 0.83
20 0.98 1.56 0.90 1.09 1.39
21 0.81 0.95 0.84 0.75 0.68
22 1.17 1.37 1.13 1.17 1.18
23 1.08 1.05 0.69 1.22 1.10
24 0.96 0.58 0.80 1.03 0.92

76

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Pass Fail Pass Fail Pass
2 Fail Fail Fail Fail Fail
3 Pass Pass Pass Pass Pass
4 Fail Fail Fail Fail Pass
5 Pass Fail Pass Pass Fail
8 Fail Fail Fail Fail Fail
9 Fail Pass Fail Fail Fail
10 Pass Fail Pass Pass Pass
11 Fail Fail Pass Fail Pass
12 Fail Fail Fail Fail Fail
13 Pass Pass Pass Pass Pass
14 Fail Fail Fail Fail Pass
15 Fail Pass Fail Fail Fail
17 Pass Fail Pass Pass Fail
18 Pass Pass Pass Pass Pass
19 Pass Pass Fail Pass Pass
20 Pass Fail Pass Pass Fail
21 Pass Pass Pass Pass Fail
22 Pass Fail Pass Pass Pass
23 Pass Pass Fail Pass Pass
24 Pass Fail Pass Pass Pass

Pass 13 8 12 12 12
Fail 8 13 9 9 9

% Pass 61.9% 38.1% 57.1% 57.1% 57.1%

77

Adjustment 90.0% 90.0% 100.0% 90.0% 90.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 1.00 1.15 0.98 0.98 1.42
2 0.66 1.19 0.70 0.74 0.76
3 1.40 1.48 1.28 1.54 1.52
4 0.70 0.77 0.73 0.83 1.01
5 1.79 2.76 1.04 1.86 2.03
8 0.81 1.14 0.66 0.88 0.64
9 0.79 1.39 0.63 0.79 0.56
10 1.52 1.24 1.28 1.69 1.41
11 2.12 2.99 1.38 2.26 1.60
12 0.74 0.92 0.61 0.82 0.64
13 1.49 2.16 1.22 1.31 1.31
14 2.14 3.27 2.40 2.12 1.67
15 3.15 1.83 2.44 3.63 2.52
17 1.75 2.82 1.23 1.87 1.80
18 1.53 2.03 1.12 1.64 1.42
19 1.20 1.67 0.75 1.50 1.13
20 1.40 2.91 1.00 1.69 1.90
21 1.15 1.76 0.94 1.16 0.93
22 1.66 2.55 1.26 1.82 1.61
23 1.54 1.95 0.77 1.89 1.50
24 1.37 1.07 0.89 1.60 1.26

78

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Pass Pass Pass Pass Fail
2 Fail Pass Pass Pass Pass
3 Fail Fail Pass Fail Fail
4 Fail Pass Pass Pass Pass
5 Fail Fail Pass Fail Fail
8 Pass Pass Fail Pass Fail
9 Pass Fail Fail Pass Fail

10 Fail Pass Pass Fail Fail
11 Fail Fail Fail Fail Fail
12 Pass Pass Fail Pass Fail
13 Fail Fail Pass Fail Fail
14 Fail Fail Fail Fail Fail
15 Fail Fail Fail Fail Fail
17 Fail Fail Pass Fail Fail
18 Fail Fail Pass Fail Fail
19 Pass Fail Pass Fail Pass
20 Fail Fail Pass Fail Fail
21 Pass Fail Pass Pass Pass
22 Fail Fail Pass Fail Fail
23 Fail Fail Pass Fail Fail
24 Fail Pass Pass Fail Pass

Pass 6 7 15 7 5
Fail 15 14 6 14 16

% Pass 28.6% 33.3% 71.4% 33.3% 23.8%

79

Adjustment 80.0% 80.0% 100.0% 80.0% 80.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.89 1.02 0.98 0.87 1.26
2 0.58 1.06 0.70 0.66 0.68
3 1.24 1.32 1.28 1.37 1.35
4 0.62 0.68 0.73 0.73 0.89
5 1.59 2.46 1.04 1.65 1.80
8 0.72 1.01 0.66 0.78 0.56
9 0.70 1.24 0.63 0.71 0.49
10 1.35 1.11 1.28 1.50 1.25
11 1.89 2.65 1.38 2.01 1.43
12 0.66 0.82 0.61 0.73 0.57
13 1.32 1.92 1.22 1.16 1.17
14 1.90 2.91 2.40 1.88 1.48
15 2.80 1.63 2.44 3.22 2.24
17 1.56 2.51 1.23 1.66 1.60
18 1.36 1.80 1.12 1.46 1.26
19 1.07 1.48 0.75 1.33 1.00
20 1.24 2.58 1.00 1.50 1.69
21 1.03 1.56 0.94 1.03 0.83
22 1.48 2.27 1.26 1.62 1.43
23 1.36 1.74 0.77 1.68 1.34
24 1.22 0.95 0.89 1.42 1.12

80

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Pass Pass Pass Pass Pass
2 Fail Pass Pass Fail Fail
3 Pass Fail Pass Fail Fail
4 Fail Fal' Pass Pass Pass
5 Fail Fail Pass Fail Fail
8 Pass Pass Fail Pass Fail
9 Fail Pass Fail Pass Fail
10 Fail Pass Pass Fail Pass
11 Fail Fail Fail Fail Fail
12 Fail Pass Fail Pass Fail
13 Fail Fail Pass Pass Pass
14 Fail Fail Fail Fail Fail
15 Fail Fail Fail Fail Fail
17 Fail Fail Pass Fail Fail
18 Fail Fail Pass Fail Pass
19 Pass Fail Pass Fail Pass
20 Pass Fail Pass Fail Fail
21 Pass Fail Pass Pass Pass
22 Fail Fail Pass Fail Fail
23 Fail Fail Pass Fail Fail
24 Pass Pass Pass Fail Pass

Pass 7 7 15 7 8
Fail 14 14 6 14 13

% Pass 33.3% 33.3% 71.4% 33.3% 38.1%

81

Adjustment 70.0% 70.0% 100.0% 70.0% 70.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.78 0.89 0.98 0.76 1.10
2 0.51 0.93 0.70 0.58 0.59
3 1.09 1.15 1.28 1.20 1.18
4 0.54 0.60 0.73 0.64 0.78
5 1.39 2.15 1.04 1.44 L58
8 0.63 0.89 0.66 0.69 0.49
9 0.61 1.08 0.63 0.62 0.43
10 1.18 0.97 1.28 1.32 1.10
11 1.65 2.32 1.38 1.76 1.25
12 0.58 0.72 0.61 0.63 0.50
13 1.16 1.68 1.22 1.02 1.02
14 1.66 2.55 2.40 1.65 1.30
15 2.45 1.42 2.44 2.82 1.96
17 1.36 2.19 1.23 1.45 1.40
18 1.19 1.58 1.12 1.28 1.10
19 0.94 1.30 0.75 1.17 0.88
20 1.08 2.26 1.00 1.31 1.48
21 0.90 1.37 0.94 0.90 0.73
22 1.29 1.98 1.26 1.42 1.25
23 1.19 1.52 0.77 1.47 1.17
24 1.06 0.83 0.89 1.24 0.98

82

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Pass Pass Pass Pass Pass
2 Fail Pass Pass Fail Fail
3 Pass Pass Pass Pass Pass
4 Fail Fail Pass Fail Pass
5 Fail Fail Pass Fail Fail
8 Fail Pass Fail Fail Fail
9 Fail Pass Fail Fail Fail
10 Pass Pass Pass Fail Pass
11 Fail Fail Fail Fail Pass
12 Fail Pass Fail Fail Fail
13 Pass Fail Pass Pass Pass
14 Fail Fail Fail Fail Pass
15 Fail Fail Fail Fail Fail
17 Fail Fail Pass Fail Fail
18 Pass Fail Pass Pass Pass
19 Pass Pass Pass Pass Pass
20 Pass Fail Pass Fail Fail
21 Pass Fail Pass Pass Pass
22 Pass Fail Pass Fail Pass
23 Pass Fail Pass Fail Pass
24 Pass Pass Pass Pass Pass

Pass 11 9 15 7 13
Fail 10 12 6 14 8

% Pass 52.4% 42.9% 71.4% 33.3% 61.9%

83

Adjustment 60.0% 60.0% 100.0% 60.0% 60.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.67 0.76 0.98 0.65 0.95
2 0.44 0.79 0.70 0.49 0.51
3 0.93 0.99 1.28 1.03 1.01
4 0.47 0.51 0.73 0.55 0.67
5 1.20 1.84 1.04 1.24 1.35
8 0.54 0.76 0.66 0.59 0.42
9 0.52 0.93 0.63 0.53 0.37
10 1.01 0.83 1.28 1.13 0.94
11 1.42 1.99 1.38 1.51 1.07
12 0.49 0.62 0.61 0.54 0.43
13 0.99 1.44 1.22 0.87 0.87
14 1.43 2.18 2.40 1.41 1.11
15 2.10 1.22 2.44 2.42 1.68
17 1.17 1.88 1.23 1.25 1.20
18 1.02 1.35 1.12 1.10 0.94
19 0.80 1.11 0.75 1.00 0.75
20 0.93 1.94 1.00 1.12 1.27
21 0.77 1.17 0.94 0.78 0.62
22 1.11 1.70 1.26 1.21 1.08
23 1.02 1.30 0.77 1.26 1.00
24 0.91 0.71 0.89 1.06 0.84

84

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Fail Pass Pass Fail Pass
2 Fail Pass Pass Fail Fail
3 Pass Pass Pass Pass Pass
4 Fail Fail Pass Fail Fail
5 Pass Fail Pass Pass Fail
8 Fail Pass Fail Fail Fail
9 Fail Pass Fail Fail Fail
10 Pass Pass Pass Pass Pass
11 Fail Fail Fail Fail Pass
12 Fail Fail Fail Fail Fail
13 Pass Fail Pass Pass Pass
14 Fail Fail Fail Fail Pass
15 Fail Pass Fail Fail Fail
17 Pass Fail Pass Pass Pass
18 Pass Fail Pass Pass Pass
19 Pass Pass Pass Pass Pass
20 Pass Fail Pass Pass Pass
21 Pass Pass Pass Pass Fail
22 Pass Fail Pass Pass Pass
23 Pass Fail Pass Pass Pass
24 Pass Pass Pass Pass Pass

Pass 12 10 15 12 13
Fail 9 11 6 9 8

% Pass 57.1% 47.6% 71.4% 57.1% 61.9%

85

Adjustment 50.0% 50.0% 100.0% 50.0% 50.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.56 0.64 0.98 0.54 0.79
2 0.36 0.66 0.70 0.41 0.42
3 0.78 0.82 1.28 0.86 0.84
4 0.39 0.43 0.73 0.46 0.56
5 1.00 1.53 1.04 1.03 1.13
8 0.45 0.63 0.66 0.49 0.35
9 0.44 0.77 0.63 0.44 0.31
10 0.84 0.69 1.28 0.94 0.78
11 1.18 1.66 1.38 1.26 0.89
12 0.41 0.51 0.61 0.45 0.35
13 0.83 1.20 1.22 0.73 0.73
14 1.19 1.82 2.40 1.18 0.93
15 1.75 1.02 2.44 2.01 1.40
17 0.97 1.57 1.23 1.04 1.00
18 0.85 1.13 1.12 0.91 0.79
19 0.67 0.93 0.75 0.83 0.63
20 0.78 1.6? 1.00 0.94 1.06
21 0.64 0.98 0.94 0.65 0.52
22 0.92 1.42 1.26 1.01 0.90
23 0.85 1.08 0.77 1.05 0.83
24 0.76 0.59 0.89 0.89 0.70

86

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Fail Fail Pass Fail Pass
2 Fail Fail Pass Fail Fail
3 Pass Pass Pass Pass Pass
4 Fail Fail Pass Fail Fail
5 Pass Fail Pass Pass Pass
8 Fail Fail Fail Fail Fail
9 Fail Pass Fail Fail Fail
10 Pass Fail Pass Pass Pass
11 Pass Fail Fail Pass Pass
12 Fail Fail Fail Fail Fail
13 Pass Pass Pass Pass Pass
14 Pass Fail Fail Pass Pass
15 Fail Pass Fail Fail Fail
17 Pass Fail Pass Pass Pass
18 Pass Pass Pass Pass Pass
19 Fail Pass Pass Pass Fail
20 Pass Fail Pass Pass Pass
21 Fail Pass Pass Fail Fail
22 Pass Fail Pass Pass Pass
23 Pass Pass Pass Pass Pass
24 Pass Fail Pass Pass Fail

Pass 12 8 15 13 12
Fail 9 13 6 8 9

% Pass 57.1% 38.1% 71.4% 61.9% 57.1%

87

Adjustment 40.0% 40.0% 100.0% 40.0% 40.0%

Project # REVIC SPQR/20 System 4 SEER PRICE-S

1 0.45 0.51 0.98 0.44 0.63
2 0.29 0.53 0.70 0.33 0.34
3 0.62 0.66 1.28 0.68 0.68
4 0.31 0.34 0.73 0.37 0.45
5 0.80 1.23 1.04 0.83 0.90
8 0.36 0.51 0.66 0.39 0.28
9 0.35 0.62 0.63 0.35 0.25
10 0.68 0.55 1.28 0.75 0.63
11 0.94 1.33 1.38 1.00 0.71
12 0.33 0.41 0.61 0.36 0.28
13 0.66 0.96 1.22 0.58 0.58
14 0.95 1.46 2.40 0.94 0.74
15 1.40 0.81 2.44 1.61 1.12
17 0.78 1.25 1.23 0.83 0.80
18 0.68 0.90 1.12 0.73 0.63
19 0.54 0.74 0.75 0.67 0.50
20 0.62 1.29 1.00 0.75 0.84
21 0.51 0.78 0.94 0.52 0.41
22 0.74 1.13 1.26 0.81 0.72
23 0.68 0.87 0.77 0.84 0.67
24 0.61 0.48 0.89 0.71 0.56

88

Is the estimate within 30%?

Project # REV SPQR Syst SER PRICE

1 Fail Fail Pass Fail Fail
2 Fail Fail Pass Fail Fail
3 Fail Fail Pass Fail Fail
4 Fail Fail Pass Fail Fail
5 Pass Pass Pass Pass Pass
8 Fail Fail Fail Fail Fail
9 Fail Fail Fail Fail Fail
10 Fail Fail Pass Pass Fail
11 Pass Fail Fail Pass Pass
12 Fail Fail Fail Fail Fail
13 Fail Pass Pass Fail Fail
14 Pass Fail Fail Pass Pass
15 Fail Pass Fail Fail Pass
17 Pass Pass Pass Pass Pass
18 Fail Pass Pass Pass Fail
19 Fail Pass Pass Fail Fail
20 Fail Pass Pass Pass Pass
21 Fail Pass Pass Fail Fail
22 Pass Pass Pass Pass Pass
23 Fail Pass Pass Pass Fail
24 Fail Fail Pass Pass Fail

Pass 5 10 15 10 7
Fail 16 11 6 11 14

% Pass 23.8% 47.6% 71.4% 47.6% 33.3%

89

Bibliography

1. Air Force Studies Board. Adapting Software Development Policies
to Modern Technolog. Washington: National Academy Press, 1989.

2. Blalock, Crystal D. An Analysis of Schedule Determination in
Software Program Development and Software Development
Estimation Models. MS Thesis, AFIT/GCA/LSY/88S-2. School of
Systems and Logistics, Air Force Institute of Technology (AU),
Wright Patterson AFB OH, September 1988 (DTIC #AD-A111
204).

3. Boehm, Barry W. "A Spiral Model of Software Development and
Enhancement," Tutorial: Software Engineering Project Management.
Washington DC: IEEE, 1988

4. ----. Software Engineering Economics. Englewood Cliffs NJ:
Prentice-Hall Inc., 1981.

5. --. "Understanding and Controlling Software Estimates," Journal
of Parametrics. VII: 32-67 (March 1988).

6. ---- and Philip N. Papaccio. "Understanding and Controlling
Software Costs," IEEE Transactions on Software Engineering. 14:
1462-1477 (Oct 1988).

7. Computer Economics, Inc. Announcing System-4. Marina del Ray
CA: CEI, Inc., 1989.

8. Conte, Samuel D., H. E. Dunsmore, and V. Y. Shen. Software
Engineering Metrics and Models. Menlo Park:
Benjamin/Cummings Publishing Co., 1986.

9. Daft, Richard L and Richard M. Steers. Organizations - A
Micro/Macro Approach. Glenview IL: Scott, Foresman and Co.,
1986.

10. Davis, Alan M., Edward H. Bersoff, and Edward R. Comer. "A
Strategy for Comparing Alternative Software Development Life
Cycle Models," IEEE Transactions on Software Engineering. 14:
1453-1461 (October 1988).

11. Department of Defense. Defense System Software Development.
Military Standard 2167A. Washington: DoD, 29 February 1988.

90

12. Duncan, William. "Get Out from Under," Comuterworld: 68-73
(February 1987).

13. Ferens, Daniel V. Defense System Software Project Management.
School of Systems and Logistics, Air Force Institute of Technology
(AU), Wright Patterson AFB OH, 1990.

14. -. "Software Schedule Estimation: The Third Wave," Journal of
Parametrics. X: 41-52 (February 1990).

15. Firesmith, Donald G. "Should the DoD Mandate a Standard
Software Development Process?" DS&E: 56-59 (July 1987).

16. Funch, Paul, MIT Research Engineer. Personal Interview. MITRE
Corporation, Bedford MA, 18 June 1990.

17. Galorath Associates, Inc. SEER User's Manual. Marina del Ray
CA: Galorath Associates, Inc., 1989.

18. Garvey, Paul R. and Frederic D. Powell. "Three Methods for
Quantifying Software Development Uncertainty," Journal f
Parametries, VII: 76-91 (March 1987).

19. General Electric Company. PRICE S Reference Manual.
Moorestown NJ: GE-Price Systems, 1990.

20. Gilb, Tom. "Software Cost Prediction Versus Software Cost
Control," Journal of Parametrics. VII: 79-89 (March 1987).

21. Glass, Robert L. Software Soliloquies. New York: Computing
Trends, 1981.

22. Gordon, Carl L, Charles R. Necco, and Nancy W. Tsai. 'Toward a
Standard Systems Development Life Cycle," Journal of Systems
Management 38: 24-27 (August 1987).

23. Greathouse, Richard M. and Kelly L Shipley. "Current Research
on Schedulers for Aerospace Industry Software." Presented at the
Society of Aerospace Engineers Aerospace Atlantic, Wright-
Patterson AFB OH, February 1990.

24. Gulezian, Ronald. "Fit, Error and Software Development Cost,"
Journal of Parametrics. IX: 62-72 (March 1989).

91

25. Hollander, Myles and Douglas A. Wolfe. Nonparametric Statistical
Methods. New York: John Wiley & Sons, 1973.

26. UT Research Institute. Test Case Study: Estimating the Cost of
Ada Software Development. April 1989.

27. Jennings, Maj Kenneth R. Class notes in ORSC 542, Management
and Behavior of Organizations, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, Jul - Sep 1989.

28, Jensen, Randall W. "An Improved Macrolevel Software
Development Resource Estimation Model," Fourteenth Asimolar
Conference on Circuits. Systems and Computers, Institute of
Electrical and Electronic Engineers, New York: 1981.

29. Kile, Raymond L. REVIC User's Manual. Unpublished. 14 July
1989.

30. Martin Marietta Denver Aerospace Corporation. SASET User's
Guide. Denver CO: Martin Marietta Corp., 1990.

31. Martin, Rick. 'Evaluation of Current Software Costing Tools,"
ACM SIGSOFT Software Engineering Notes. 13: 49-51 (July 1988).

32. McGough, Keith. "Cost Estimation in Software Engineering,"
Journal of Parametrics. VII: 5-9 (June 1987).

33. Metzger, Philip W. Managing a Programming Project. Englewood
Cliffs NJ: Prentice-Hall Inc., 1981.

34. Newbold, Paul. Statistics for Business and Economics. Englewood
Cliffs NJ: Prentice-Hall Inc., 1988.

35. Parikh, Girish. Programmer Productiviy. Reston VA: Reston
Publishing Co., 1984.

36. Quantitative Software Management, Inc. SLIM Software Life Cycle
Mnagggmr l. McLean VA: QSM, Inc., 1987.

37. Rampton, Judy Crockett. "Software Development Staffing Plans -
Froi Estimate to Reality," Journal of Parametrics. VII: 51-58 (Dec
1987).

92

38. Reese, Richard M. and Jim Tamulevicz. "Software Sizing
Methodologies," Journal of Parametrics. VI: 35-54 (June 1987).

39. Royce, Winston W. "Managing the Development of Large Software
Systems," Proceedings of IEEE WESCON: 1-9 (1970).

40. Sierevelt, Hank. "Observations on Software Models," Journal ot
Parametrics. VI: 51-74 (December 1986).

41. Simpson, W. Dwain. New Technologies in Software Project
Manaymen. New York: John Wiley & Sons, Inc., 1987.

42. Software Productivity Research, Inc. User Guide SPOR/20.
Cambridge MA: Software Productivity Research, Inc., 1989.

43. Weinberg, Gerald M. The Psychology of Computer Programming.
New York: Van Norstrand Reinhold Co., 1971.

93

VITA

Captain Bryan A. Daly received the degree of Bachelor of Science

from the United States Air Force Academy in 1982. His major concentra-

tion was in Management. He was commissioned on 2 June 1982 as a

Second Lieutenant in the USAF. He first served as a Cost/Schedule

Control Systems Criteria (C/SCSC) Surveillance Monitor at the Air Force

Plant Representative Office at General Electric in Evendale, Ohio. He

next was stationed at the Electronic Systems Division (ESD), working for

one year as a C/SCSC Team Chief in the Cost Analysis section. He then

worked for three years as a Cost Analyst in the Advanced Technology

System Program Office at ESD, before entering the school of Systems and

Logistics, Graduate Studies in Cost Analysis, Air Force Institute of Tech-

nology, in July 1989.

Permanent Address: 1 Elm Street

Newburgh, NY 12550

94

FomApproved
RF'~uRT DOCUMENTATION PAGE OMB No 0704-0188

*vox 'emn-mg e difn to this cliti9(1,of of information is tit eat~ to avetage nOU hour '1oer ew niciwaig the time lot rev.Cw-n shti *~chtO wac- e. $ Ig d&8 WIcvf
gatf '..n AM ain'ataining Iath a1 neti d and coYO'ft'tg and 't t he coliCtiert.0' of . ,'aton send commetnts rega'd-ng this bw~den Cit''at or on, atp eC, 01 1%,b
coliot'on C n$0.imaton. rnwci..dng wggc~tOnI for 'Oducrig Inh.I bsot, to *8snglqon "eaaariles S~e.ces. otrectorate for information~ Ove'altohian ato lW 'elc'trs2

0&,s i iifay. Su-19 1204 Arlington, /A 22202-4302 and to the 0
4
fce of Mhigenent and BUdGer Paverwork otediuelo" Project (0704.018S) WaIt-gtor U 205,^J

IAGENCY USE ONLY (Leave bwank) 2. REPORT DATE 3.- REPOeRT TYP hN es CVEE
SSeptemnber 1990MatrsTei

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A COMPARISON OF SOFTWARE SCHEDULE ESTIMATORS

6. AUTHOR(S)

Bryan A. Daly, Captain, USAF

?. PERFORMING ORGANIZATION NAME(S) AND ADORIESS(ES) 8. PERFORMING ORGANJIZATION
REPORT NUMBER

Air Force Institute of Technology, -WPAFB OH 45433-6583 AFIT/GCA/LSQ/90S-1

2. SPONSORING!MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

1.ABSTRACT (Maximum 200 words)
, Accurate schedule estimation in Software development programs is important

because schedule is a major determinant of cost. Further, as a greater
percentage of weapon system cost is taken by software, there is a greater
need for knowledge in this area. In order to verify the accuracy of schedule
prediction for software development obtainable today, this effort exaxrined
five commercially available software cost/schedule estimators. The estimated
results were analyzed for their accuracy in predicting the actual schedules
experienced on the projects. The models analyzed were RLVIC, PRICE-S.
System-4, SPQR/20, and SEER.

14. SUBJECT TERMS 15. NUMBER OF PAGES
106

>Cost, Schedule, Software, Models 16. PRICE CODE

17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION I12. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified IUnclassified UL

NSN 7540-01 -280-5500 Standard rorrn 298 (Rev 2-89)
P's'W 0, %S' SIC 239 '

298

